Advertisement

Cord Blood as a Treatment for Stroke

  • Alison E. WillingEmail author
  • E. A. Foran
Chapter
Part of the Springer Series in Translational Stroke Research book series (SSTSR)

Abstract

Over the last few decades, there has been an explosion in stem cell research. The investigation of umbilical cord blood (UCB) cells as a treatment for stroke is even more recent. Ease of collection and the ability to maintain their stem cell properties post-cryopreservation made these cells very attractive candidates for treatment development initially. UCB cells have many advantages including a wide variety of cell types present, including hematopoietic stem cells, mesenchymal stem cells, endothelial progenitor cells, lymphocytes, and monocytes, which enhances their ability to modulate multiple targets impacted by neurodegenerative processes. Although the precise mechanisms of action are still being researched, UCB cells have been shown to benefit functional recovery and also reduce infarct size post-stroke. They have also demonstrated an ability to provide these benefits when administered peripherally and within 24–48 h post-stroke, which immensely expands the current treatment window of 3–4 h for tissue plasminogen activator. This chapter highlights the current research with UCB cells in the development of a novel treatment for stroke and demonstrates the great therapeutic potential of these cells.

Keywords

Glial Fibrillary Acidic Protein Brain Derive Neurotrophic Factor Umbilical Cord Blood Endothelial Progenitor Cell Oxygen Glucose Deprivation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

AAS

Antibiotic antimycotic solution

APB

Adult peripheral blood

BDNF

Brain derived neurotrophic factor

BFU-E

Erythroid burst-forming units

BM

Bone marrow

CDC

Center for disease control and prevention

CFU-G

Granulocyte-macrophage colony-forming units

CFU-GEM

Granulocyte/erythrocyte/macrophage/megakaryocyte colony-forming units

CLP

Common lymphoid progenitor

CNS

Central nervous system

CNTF

Ciliary neurotrophic factor

CSF

Colony stimulating factor

CX3CR1

Fractalkine receptor

ECFCs

Endothelial colony forming cells

EGF

Epidermal growth factor

EPCs

Endothelial progenitor cells

Epo

Erythropoietin

ESMSCs

Embryonic stem cell-derived mesenchymal stem cells

ext34-

Exterior CD34-negative

FDA

Food and drug administration

FGF

Fibroblast growth factor

G-CSF

Granulocyte colony stimulating factor

Gal-C

Galactocerebrocide

GAP43

Neural associated growth protein 43

GFAP

Glial fibrillary acidic protein

GM-CSF

Granulocyte and macrophage colony stimulating factor

GVHD

Graft-versus-host disease

hEGF

Human epidermal growth factor

HGF

Hepatic growth factor

HLA

Human leukocyte antigen

HSC

Hematopoeitic stem cells

hT cells

Jurkat T-cells

IA

Intrarterial

ICAM

Intercellular adhesion molecule

ICV

Intracerebroventricular

IFN

Interferon

Ig

Immunoglobulin

IGF

Insulin-like growth factor

IGFBP2

Insulin-like growth factor binding protein 2

IL

Interleukin

int34+

Interior CD34-positive

IS

Intrastriatal

IV

Intravenous(ly)

LDH

Lactic acid dehydrogenase

LIF

Leukemia inhibitory factor

LIR-8

Leukocyte immunoglobulin-like receptor-8

MAP

Microtubule associated protein

MARCO

Macrophage receptor with collagenous structure

MCAO

Middle cerebral artery occlusion

MHC

Major histocompatibility complex

MNC

Mononuclear cell

mNSS

Modified neurological severity score

MPC

Myeloid progenitor cells

MRI

Magnetic resonance imaging

MSCs

Mesenchymal stem cells

NeuN

Neuron-specific neural protein

NF-200

Neurofilament heavy

NGF

Nerve growth factor

NK

Natural killer

NO

Nitric oxide

NSC

Neural stem cell

NT4/5

Neurotrophin 4/5

OCT4

Octomer-binding transcription factor-4

OGD

Oxygen glucose deprivation

PBS

Phosphate buffered saline

PDGF

Platelet-derived growth factor

Prdx

Peroxiredoxin

qRT-PCR

Quantitative real time-polymerase chain reaction

RA

Retinoic acid

ROS

Reactive oxygen species

SCF

Stem cell factor

SDF

Stromal cell-derived factor

SOX2

Sex-determining region Y-box two

SSEA

Stage specific embryonic antigen

SVZ

Subventricular zone

TGF

Transforming growth factor

tPA

Tissue plasminogen activator

TPO

Thrombopoietin

TRA

Tumor rejection antigen

TuJ1

III β-tubulin

UCB

Umbilical cord blood

VCAM

Vascular adhesion molecule

VEGF

Vascular endothelial growth factor

vWF

von Willebrand factor

References

  1. Abbas AK, Lichtman AH, Pillai SCaMI (2011) Cellular and molecular immunology: with STUDENT CONSULT Online Access, 7th edn. Elsvier Health Sciences, AmsterdamGoogle Scholar
  2. Ahn SY, Chang YS, Sung DK, Sung SI, Yoo HS, Lee JH, Oh WI, Park WS (2013) Mesenchymal stem cells prevent hydrocephalus after severe intraventricular hemorrhage. Stroke 44:497–504PubMedGoogle Scholar
  3. Ajmo CTJ, Vernon DO, Collier L, Hall AA, Garbuzova-Davis S, Willing A, Pennypacker KR (2008) The spleen contributes to stroke-induced neurodegeneration. J Neurosci Res 86:2227–2234PubMedCentralPubMedGoogle Scholar
  4. Ali H, Al-Mulla F (2012) Defining umbilical cord blood stem cells. Stem Cell Discovery 2:15–23Google Scholar
  5. Arien-Zakay H, Lecht S, Bercu MM, Tabakman R, Kohen R, Galski H, Nagler A, Lazarovici P (2009) Neuroprotection by cord blood neural progenitors involves antioxidants, neurotrophic and angiogenic factors. Exp Neurol 216:83–94PubMedGoogle Scholar
  6. Asahara T, Kawamoto A (2004) Endothelial progenitor cells for postnatal vasculogenesis. Am J Physiol Cell Physiol 287:C572–C579PubMedGoogle Scholar
  7. Auerbach AD (1995) Fanconi anemia. Dermatol Clin 13:41–49PubMedGoogle Scholar
  8. Auffray C, Sieweke MH, Geissmann F (2009) Blood monocytes: development, heterogeneity, and relationship with Dendritic cells. Annu Rev Immunol 27:669–692PubMedGoogle Scholar
  9. Bacchetta R, Bigler M, Touraine JL, Parkman R, Tovo PA, Abrams J, de Waal MR, de Vries JE, Roncarolo MG (1994) High levels of interleukin 10 production in vivo are associated with tolerance in SCID patients transplanted with HLA mismatched hematopoietic stem cells. J Exp Med 179:493–502PubMedGoogle Scholar
  10. Bachstetter AD, Pabon MM, Cole MJ, Hudson CE, Sanberg PR, Willing AE, Bickford PC, Gemma C, Bachstetter AD, Pabon MM, Cole MJ, Hudson CE, Sanberg PR, Willing AE, Bickford PC, Gemma C (2008) Peripheral injection of human umbilical cord blood stimulates neurogenesis in the aged rat brain. BMC Neurosci 9:22PubMedCentralPubMedGoogle Scholar
  11. Bae S-H, Kong T-H, Lee H-S, Kim K-S, Hong KS, Chopp M, Kang M-S, Moon J (2012) Long-lasting paracrine effects of human cord blood cells on damaged neocortex in an animal model of cerebral palsy. Cell Transplant 21:2497–2515PubMedGoogle Scholar
  12. Ballen K (2005) New trends in umbilical cord blood transplantation. Blood 105:3786–3782PubMedGoogle Scholar
  13. Ballen KK, Gluckman E, Broxmeyer HE (2013) Umbilical cord blood transplantation: the first 25 years and beyond. Blood 122:491–498PubMedCentralPubMedGoogle Scholar
  14. Belge KU, Dayyani F, Horelt A, Siedlar M, Frankenberger M, Frankenberger B, Espevik T, Ziegler-Heitbrock L (2002) The proinflammatory CD14+ CD16+ DR+ + monocytes are a major source of TNF. J Immunol 168:3536–3542PubMedGoogle Scholar
  15. Benner EJ, Mosley RL, Destache CJ, Lewis TB, Jackson-Lewis V, Gorantla S, Nemachek C, Green SR, Przedborski S, Gendelman HE (2004) Therapeutic immunization protects dopaminergic neurons in a mouse model of Parkinson’s disease. Proc Natl Acad Sci U S A 101:9435–9440PubMedCentralPubMedGoogle Scholar
  16. Bertolini F, Lazzari L, Lauri E, Corsini C, Castelli C, Gorini F, Sirchia G (1995) Comparative study of different procedures for the collection and banking of umbilical cord blood. J Hematother 4:29–36PubMedGoogle Scholar
  17. Bicknese AR, Goodwin HS, Quinn CO, Henderson VC, Chien SN, Wall DA (2002) Human umbilical cord blood cells can be induced to express markers for neurons and glia. Cell Transplant 11:261–264PubMedGoogle Scholar
  18. Bieback K, Kern S, Klüter H, Eichler H (2004) Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells 22:625–634PubMedGoogle Scholar
  19. Binder CJ, Silverman GJ (2005) Natural antibodies and the autoimmunity of atherosclerosis. Springer Semin Immunopathol 26:385–404PubMedGoogle Scholar
  20. Boltze J, Reich DM, Hau S, Reymann KG, Strassburger M, Lobsein D, Wagner D-C, Kamprad M, Stahl T (2012a) Assessment of neuroprotective effects of human umbilical cord blood mononuclear cell subpopulations in vitro and in vivo. Cell Transplant 21:723–737PubMedGoogle Scholar
  21. Boltze J, Schmidt UR, Reich DM, Kranz A, Reymann KG, Strassburger M, Lobsien D, Wagner DC, Forschler A, Schabitz WR (2012b) Determination of the therapeutic time window for human umbilical cord blood mononuclear cell transplantation following experimental stroke in rats. Cell Transplant 21:1199–1211PubMedGoogle Scholar
  22. Borlongan CV, Hadman M, Davis Sanberg C, Sanberg PR (2004) CNS entry of peripherally injected umbilical cord blood cells is not required for neuroprotection in stroke. Stroke 35:2385–2389PubMedGoogle Scholar
  23. Bracci-Laudiero L, Celestino D, Starace G, Antonelli A, Lambiase A, Procoli A, Rumi C, Lai M, Picardi A, Ballatore G, Bonini S, Aloe L (2003) CD34-positive cells in human umbilical cord blood express nerve growth factor and its specific receptor TrkA. J Neuroimmunol 136:130–139PubMedGoogle Scholar
  24. Brichard B, Varis I, Latinne D, Deneys V, de Bruyere M, Leveugle P, Cornu G (2001) Intracellular cytokine profile of cord and adult blood monocytes. Bone Marrow Transplant 27:1081–1086PubMedGoogle Scholar
  25. Broxmeyer HE, Douglas GW, Hangoc G, Cooper S, Bard J, English D, Arny M, Thomas L, Boyse EA (1989) Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci U S A 86:3828–3832PubMedCentralPubMedGoogle Scholar
  26. Broxmeyer HE, Hangoc G, Cooper S, Ribeiro RC, Graves V, Yoder M, Wagner J, Vadhan-Raj S, Benninger L, Rubinstein P, Broun ER (1992) Growth characteristics and expansion of human umbilical cord blood and estimation of its potential for transplantation in adults. Proc Natl Acad Sci U S A 89:4109–4113PubMedCentralPubMedGoogle Scholar
  27. Broxmeyer HE, Lee MR, Hangoc G, Cooper S, Prasain N, Kim YJ, Mallet C, Ye Z, Witting S, Cornetta K, Cheng L, Yoder MC (2011) Hematopoietic stem/progenitor cells, generation of induced pluripotent stem cells, and isolation of endothelial progenitors from 21-to 23.5-year cryopreserved cord blood. Blood 117:4773–4777PubMedCentralPubMedGoogle Scholar
  28. Bühnemann C, Scholz A, Bernreuther C, Malik CY, Braun H, Schachner M, Reymann KG, Dihné M (2006) Neuronal differentiation of transplanted embryonic stem cell-derived precursors in stroke lesions of adult rats. Brain 129:3238–3248PubMedGoogle Scholar
  29. Buzanska L, Machaj EK, Zablocka B, Pojda Z, Domanska-Janik K (2002) Human cord blood-derived cells attain neuronal and glial features in vitro. J Cell Sci 115:2131–2138PubMedGoogle Scholar
  30. Bużańska L, Jurga M, Stachowiak EK, Stachowiak MK, Domańska-Janik K (2006) Neural stem-like cell line derived from a nonhematopoietic population of human umbilical cord blood. Stem Cells Dev 15:391–406PubMedGoogle Scholar
  31. Chang L, Chen Y, Li J, Liu Z, Wang Z, Chen J, Cao W, Xu Y (2011) Cocaine-and amphetamine-regulated transcript modulates peripheral immunity and protects against brain injury in experimental stroke. Brain Behav Immun 25:260–269PubMedGoogle Scholar
  32. Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, Sanchez-Ramos J, Chopp M (2001) Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 32:2682–2688PubMedGoogle Scholar
  33. Chen N, Newcomb J, Garbuzova-Davis S, Sanberg CD, Sanberg PR, Willing AE (2010) Human umbilical cord blood cells have trophic effects on young and aging Hippocampal neurons in vitro. Aging Dis 1:173–190PubMedCentralPubMedGoogle Scholar
  34. Chua SJ, Bielecki R, Wong CJ, Yamanaka N, Rogers IM, Casper RF (2009) Neural progenitors, neurons and oligodendrocytes from human umbilical cord blood cells in a serum-free, feeder-free cell culture. Biochem Biophys Res Comm 379:217–221PubMedGoogle Scholar
  35. D’Arena G, Musto P, Cascavilla N, Di Giorgio G, Fusilli S, Zendoli F, Carotenuto M (1998) Flow cytometric characterization of human umbilical cord blood lymphocytes: immunophenotypic features. Haematologica 83:197–203PubMedGoogle Scholar
  36. De Paula S, Santos- Vitola S, Greggio S, De Paula D, Billig-Mello P, Mistrello-Lubianca J, Xavier LL, FIORI HH, Dacosta JC (2009) Hemispheric Brain Injury and Behavioral Deficits Induced by Severe Neonatal Hypoxia-Ischemia in Rats Are Not Attenuated by Intravenous Administration of Human Umbilical Cord Blood Cells. Pediatr Res 65:631–635PubMedGoogle Scholar
  37. De Paula S, Greggio S, Marinowic DR, Machado DC, DaCosta JC (2012) The dose-response effect of acute intravenous transplantation of human umbilical cord blood cells on brain damage and spatial memory deficits in neonatal hypoxia-ischemia. Neurosci 210:431–441Google Scholar
  38. Dhandapani KM, Brann DW (2003) Transforming growth factor-beta: a neuroprotective factor in cerebral ischemia. Cell Biochem Biophys 39:13–22PubMedGoogle Scholar
  39. Dirnagl U, Priller J (2005) Focal cerebral ischemia: the multifaceted role of glial cells. In: Kettenmann H, Ransom BR (eds) Neuroglia, 2nd edn. Oxford University, New York, pp 511–520Google Scholar
  40. Edwards JC, Cambridge G (2006) B-cell targeting in rheumatoid arthritis and other autoimmune diseases. Nat Rev Immunol 6:394–403PubMedGoogle Scholar
  41. Eggermann J, Kliche S, Jarmy G, Hoffmann K, Mayr-Beyrle U, Debatin KM, Beltinger C (2003) Endothelial progenitor cell culture and differentiation in vitro: a methodological comparison using human umbilical cord blood. Cardiovasc Res 58:478–486PubMedGoogle Scholar
  42. Fan C-G, Zhang Q-J, Tang F-W, Han Z-B, Wang G-S, Han Z-C (2005) Human umbilical cord blood cells express neurotrophic factors. Neurosci Lett 380:322–325PubMedGoogle Scholar
  43. Filias A, Theodorou G, Mouzopoulou S, Varvarigou A, Mantagos S, Karakantza M (2011) Phagocytic ability of neutrophils and monocytes in neonates. BMC Pediatr 11:29PubMedCentralPubMedGoogle Scholar
  44. Finney MR, Greco NJ, Haynesworth SE, Martin JM, Hedrick DP, Swan JZ, Winter DG, Kadereit S, Joseph ME, Fu P, Pompili VJ, Laughlin MJ (2006) Direct comparison of umbilical cord blood versus bone marrow-derived endothelial precursor cells in mediating neovascularization in response to vascular ischemia. Biol Blood Marrow Transplant 12:585–593PubMedGoogle Scholar
  45. Geissler M, Dinse HR, Neuhoff S, Kreikemeier K, Meier C (2011) Human umbilical cord blood cells restore brain damage induced changes in rat Somatosensory cortex. PLoS ONE 6:e20194PubMedCentralPubMedGoogle Scholar
  46. Geissmann F, Auffray C, Palframan R, Wirrig C, Ciocca A, Campisi L, Narni-Mancinelli E, Lauvau G (2008) Blood monocytes: distinct subsets, how they relate to dendritic cells, and their possible roles in the regulation of T-cell responses. Immunol Cell Biol 86:398–408PubMedGoogle Scholar
  47. Gille C, Leiber A, Mundle I, Spring B, Abele H, Spellerberg B, Hartmann H, Poets CF, Orlikowsky TW (2009) Phagocytosis and postphagocytic reaction of cord blood and adult blood Monocyte after infection with green fluorescent protein-labeled Escherichia coli and Group B Streptococci. Cytometry Part B 76B:271–284Google Scholar
  48. Gilmore GL, DePasquale DK, Lister J, Shadduck RK (2000) Ex vivo expansion of human umbilical cord blood and peripheral blood CD34+ hematopoietic stem cells. Exp Hematol 28:1297–1305PubMedGoogle Scholar
  49. Gluckman E, Rocha V, Boyer-Chammard A, Locatelli F, Arcese W, Pasquini R, Ortega J, Souillet G, Ferreira E, Laporte JP, Fernandez M, Chastang C (1997) Outcome of cord-blood transplantation from related and unrelated donors. N Eng J Med 337:373–381Google Scholar
  50. Go AS et al (2013) Heart disease and stroke statistics-2013 update: a report from the American Heart Association. Circulation 127:e6–e245Google Scholar
  51. Golden JE, Shahaduzzaman M, Wabnitz A, Green S, Womble TA, Sanberg PR, Pennypacker KR, Willing AE (2012) Human umbilical cord blood cells alter blood and spleen cell populations after stroke. Transl Stroke Res 3:491–499PubMedCentralPubMedGoogle Scholar
  52. Ha Y, Choi DH, Yeon DS, Lee JJ, Kim HO, Cho YE (2001) Neural phenotype expression of cultured human cord blood cells in vitro. NeuroReport 12:3523–3527PubMedGoogle Scholar
  53. Ha Y, Lee JE, Kim KN, Cho YE, Yoon DH (2003) Intermediate filament nestin expressions in human cord blood monocytes (HCMNCs). Acta Neurochir (Wien) 145:483–487Google Scholar
  54. Habich A, Jurga M, Markiewicz I, Lukomska B, Bany-Laszewicz U, Domanska-Janik K (2006) Early appearance of stem/progenitor cells with neural-like characteristics in human cord blood mononuclear fraction cultured in vitro. Exp Hematol 34:914–925PubMedGoogle Scholar
  55. Haddad R, Guardiola P, Izac B, Thibault C, Radich J, Delezoide AL, Baillou C, Lemoine FM, Gluckman JC, Pflumio F, Canque B (2004) Molecular characterization of early human T/NK and B-lymphoid progenitor cells in umbilical cord blood. Blood 104:3918–3926PubMedGoogle Scholar
  56. Hall A, Guyer A, Leonardo C, Ajmo C, Collier L, Willing AE, Pennypacker KR (2009a) Umbilical cord blood cells directly suppress ischemic oligodendrocyte cell death. J Neurosci Res 87:333–341PubMedCentralPubMedGoogle Scholar
  57. Hall AA, Leonardo CC, Collier LA, Rowe DD, Willing AE, Pennypacker KR (2009b) Delayed treatments for stroke influence neuronal death in rat organotypic slice cultures subjected to oxygen glucose deprivation. Neurosci 164:470–477Google Scholar
  58. Harris DT, Schumacher MJ, Locascio J, Besencon FJ, Olson GB, DeLuca D, Shenker L, Bard J, Boyse EA (1992) Phenotypic and functional immaturity of human umbilical cord blood T lymphocytes. Proc Natl Acad Sci U S A 89:10006–10010PubMedCentralPubMedGoogle Scholar
  59. Hau S, Reich DM, Scholz M, Naumann W, Emmich F, Kamprad M, Boltze J (2008) Evidence for neuroprotective properties of human umbilical cord blood cells after neuronal hypoxia in vitro. BMC Neurosci 9:30PubMedCentralPubMedGoogle Scholar
  60. Hoyert DL, Xu JQ (2012) Deaths: preliminary data for 2011. In National vital statistics reports. HyattsvilleGoogle Scholar
  61. Hurn PD, Subramanian S, Parker SM, Afentoulis ME, Kaler LJ, Vandenbark AA, Offner H (2007) T- and B-cell-deficient mice with experimental stroke have reduced lesion size and inflammation. J Cereb Blood Flow Metab 27:1798–1805PubMedCentralPubMedGoogle Scholar
  62. Ingram DA, Mead LE, Tanaka H, Meade V, Fenoglio A, Mortell K, Yoder MC (2004) Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104:2752–2760PubMedGoogle Scholar
  63. Iskander A, Knight RA, Zhang ZG, Ewing JR, Shankar A, Varma NR, Bagher-Ebadian H, Ali MM, Arbab AS, Janic B (2013) Intravenous administration of human umbilical cord blood-derived AC133+ endothelial progenitor cells in rat stroke model reduces infarct volume: magnetic resonance imaging and histological findings. Stem Cells Transl Med 2:703–714PubMedCentralPubMedGoogle Scholar
  64. Jang YK, Park JJ, Lee MC, Yoon BH, Yang YS, Yang SE, Kim SU (2004) Retinoic acid-mediated induction of neurons and glial cells from human umbilical cord-derived hematopoietic stem cells. J Neurosci Res 75:573–584PubMedGoogle Scholar
  65. Janic B, Guo AM, Iskander AS, Varma NR, Scicli AG, Arbab AS (2010) Human cord blood-derived AC133+ progenitor cells preserve endothelial progenitor characteristics after long term in vitro expansion. PLoS ONE 5:e9173PubMedCentralPubMedGoogle Scholar
  66. Jiang Q, Azuma E, Hirayama M, Iwamoto S, Kumamoto T, Kobayashi M, Yamamoto H, Sakurai M, Komada Y (2001) Functional immaturity of cord blood monocytes as detected by impaired response to hepatocyte growth factor. Ped Intl 43:334–339Google Scholar
  67. Jiang L, Newman M, Saporta S, Chen N, Sanberg C, Sanberg PR, Willing AE (2008) MIP-1α and MCP-1 Induce migration of human umbilical cord blood cells in models of stroke. Curr Neurovasc Res 5:118–124PubMedGoogle Scholar
  68. Jiang L, Womble T, Saporta S, Chen N, Sanberg CD, Sanberg PR, Willing AE (2010) Human umbilical cord blood cells depress the microglial inflammatory response in vitro. Stem Cells Dev 19:221–227PubMedCentralPubMedGoogle Scholar
  69. Jiang L, Saporta S, Chen N, Sanberg CD, Paul Sanberg PR, Alison Willing AE (2011) The effect of human umbilical cord blood cells on survival and cytokine production by post-ischemic astrocytes in vitro. Stem Cell Rev 6:523–531Google Scholar
  70. Jurga M, Markiewicz I, Sarnowska A, Habich A, Kozlowska H, Lukomska B, Buzanska L, Domanska-Janik K (2006) Neurogenic potential of human umbilical cord blood: neural-like stem cells depend on previous long-term culture conditions. J Neurosci Res 83:627–637PubMedGoogle Scholar
  71. Juvela S (1995) Risk factors for impaired outcome after spontaneous intracerebral hemorrhage. Arch Neurol 52:1193–1200PubMedGoogle Scholar
  72. Kawada H, Takizawa S, Takanashi T, Morita Y, Fujita J, Fukuda K, Takagi S, Okano H, Ando K, Hotta T (2006) Administration of hematopoietic cytokines in the subacute phase after cerebral infarction is effective for functional recovery facilitating proliferation of intrinsic neural stem/progenitor cells and transition of bone marrow-derived neuronal cells. Circulation 113:701–710PubMedGoogle Scholar
  73. Khakoo AY, Finkel T (2005) Endothelial progenitor cells. Annu Rev Med 56:79–101PubMedGoogle Scholar
  74. Kogler G, Radke TF, Lefort A, Sensken S, Fischer J, Sorg RV, Wernet P (2005) Cytokine production and hematopoiesis supporting activity of cord blood-derived unrestricted somatic stem cells. Exp Hematol 33:573–583PubMedGoogle Scholar
  75. Koh SH, Kim KS, Choi MR, Jung KH, Park KS, Chai YG, Kim SH (2008) Implantation of human umbilical cord-derived mesenchymal stem cells as a neuroprotective therapy for ischemic stroke in rats. Brain Res 1229:233–248PubMedGoogle Scholar
  76. Kozłowska H, Jabłonka J, Janowski M, Jurga M, Kossut M, Domańska-Janik K (2007) Transplantation of a novel human cord blood-derived neural-like stem cell line in a rat model of cortical infarct. Stem Cells Dev 16:481–488PubMedGoogle Scholar
  77. Kriz J (2006) Inflammation in ischemic brain injury: timing is important. Crit Rev Neurobiol 18:145–157PubMedGoogle Scholar
  78. Lalancette-Hebert M, Gowing G, Simard A, Weng YC, Kriz J (2007) Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci 27:2596–2605PubMedGoogle Scholar
  79. Le T, Leung L, Carroll WL, Schibler KR (1997) Regulation of interleukin—10 gene expression: possible mechanisms accounting for its upregulation and for maturational differences in its expression by blood mononuclear cells. Blood 89:4112–4119PubMedGoogle Scholar
  80. Leonardo C, Hall AA, Collier LA, Ajmo CT Jr, Willing AE, Pennypacker KR (2010) HUCB cell therapy blocks the morphological change and recruitment of CD11b-expressing, isolectin-binding proinflammatory cells after MCAO. J Neurosci Res 88:1213–1222PubMedCentralPubMedGoogle Scholar
  81. Lim JY, Park SI, Oh JH, Kim SM, Jeong CH, Jun JA, Lee KS, Oh W, Lee JK, Jeun SS, Lim JY, Park SI, Oh JH, Kim SM, Jeong CH, Jun JA, Lee K-S, Oh W, Lee J-K, Jeun S-S (2008) Brain-derived neurotrophic factor stimulates the neural differentiation of human umbilical cord blood-derived mesenchymal stem cells and survival of differentiated cells through MAPK/ERK and PI3 K/Akt-dependent signaling pathways. J Neurosci Res 86:2168–2178PubMedGoogle Scholar
  82. Liu CH, Hwang SM (2005) Cytokine interactions in mesenchymal stem cells from cord blood. Cytokine 32:270–279PubMedGoogle Scholar
  83. Liu E, Tu W, Law HKW, Lau Y-L (2001) Decreased yield, phenotypic expression and function of immature monocyte-derived dendritic cells in cord blood. Br J Haematol 113:240–246PubMedGoogle Scholar
  84. Ma N, Ladilov Y, Moebius JM, Ong L, Piechaczek C, Dávid Á, Kaminski A, Choi Y-H, Li W, Egger D, Stamm C, Steinhoff G (2006) Intramyocardial delivery of human CD133+ cells in a SCID mouse cryoinjury model: bone marrow vs. cord blood-derived cells. Cardiovasc Res 71:158–169PubMedGoogle Scholar
  85. MacLellan CL, Silasi G, Auriat AM, Colbourne F (2010) Rodent models of intracerebral hemorrhage. Stroke 41:95–98Google Scholar
  86. Makinen S, Kekarainen T, Nystedt J, Liimatainen T, Huhtala T, Narvanen A, Laine J, Jolkkonen J (2006) Human umbilical cord blood cells do not improve sensorimotor or cognitive outcome following transient middle cerebral artery occlusion in rats. Brain Res 1123:207–215PubMedGoogle Scholar
  87. Martins AA, Paiva A, Morgado JM, Gomes A, Pais ML (2009) Quantification and immunophenotypic characterization of bone marrow and umbilical cord blood mesenchymal stem cells by multicolor flow cytometry. Transplant Proc 41:943–946PubMedGoogle Scholar
  88. McGuckin CP, Pearce D, Forraz N, Tooze JA, Watt SM, Pettengell R (2003) Multiparametric analysis of immature cell populations in umbilical cord blood and bone marrow. Eur J Haematol 71:341–350PubMedGoogle Scholar
  89. McGuckin CP, Forraz N, Baradez MO, Navran S, Zhao J, Urban R, Tilton R, Denner L (2005) Production of stem cells with embryonic characteristics from human umbilical cord blood. Cell Prolif 38:245–255PubMedGoogle Scholar
  90. Meier C, Middlelanis J, Wasielewski B, Neuhoff S, Roth-Haerer A, Gantert M, Dinse HR, Dermietzel R, Jensen A (2006) Spastic paresis after perinatal brain damage in rats is reduced by human cord blood mononuclear cells. Pediatr Res 59:244–249PubMedGoogle Scholar
  91. Morgado JM, Pratas R, Laranjeira P, Henriques A, Crespo I, Regateiro F, Paiva A (2008) The phenotypical and functional characteristics of cord blood monocytes and CD14 (-/low)/CD16 (+) dendritic cells can be relevant to the development of cellular immune responses after transplantation. Transpl Immunol 19:55–63PubMedGoogle Scholar
  92. Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, Libby P, Weissleder R, Pittet MJ (2007) The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 204:3037–3047PubMedCentralPubMedGoogle Scholar
  93. Nan Z, Grande A, Sanberg CD, Sanberg PR, Low WC (2005) Infusion of human umbilical cord blood amerlieorates neurologic deficits in rats with hemorrhagic brain injury. Ann NY Acad Sci 1049:84–96PubMedGoogle Scholar
  94. Newcomb JD, Ajmo CT, Davis Sanberg C, Sanberg PR, Pennypacker KR, Willing AE (2006) Timing of cord blood treatment after experimental stroke determines therapeutic efficacy. Cell Transplant 15:213–223PubMedGoogle Scholar
  95. Newman MB, Willing AE, Manresa JJ, Davis-Sanberg C, Sanberg PR (2005) Stroke induced migration of human umbilical cord blood: time course and cytokines. Stem Cells Dev 14:576–586PubMedGoogle Scholar
  96. Newman MB, Willing AE, Manresa JJ, Davis Sanberg C, Sanberg PR (2006) Cytokines produced by cultured human umbilical cord blood (HUCB) cells: implications for brain repair. Exp Neurol 199:201–208PubMedGoogle Scholar
  97. Nih LR, Deroide N, Lere-Dean C, Lerouet D, Soustrat M, Levy BI, Silvestre JS, Merkulova-Rainon T, Pocard M, Margaill I, Kubis N (2012) Neuroblast survival depends on mature vascular network formation after mouse stroke: role of endothelial and smooth muscle progenitor cell co-administration. Eur J Neurosci 35:1208–1217PubMedGoogle Scholar
  98. NINDS_rtPA_Stroke_Study_Group (1995) Tissue plasminogen activator for acute ischemic stroke. N Eng J Med 333:1581–1587Google Scholar
  99. Nystedt J, Makinen S, Laine J, Jolkkonen J (2006) Human cord blood CD34+ cells and behavioral recovery following focal cerebral ischemia in rats. Acta Neurobiol Exp (Wars) 66:293–300Google Scholar
  100. Offner H, Subramanian S, Parker SM, Afentoulis ME, Vandenbark AA, Hurn PD (2006a) Experimental stroke induces massive, rapid activation of the peripheral immune system. J Cereb Blood Flow Metab 26:654–665PubMedGoogle Scholar
  101. Offner H, Subramanian S, Parker SM, Afentoulis ME, Vandenbark AA, Hurn PD (2006b) Experimental stroke induces massive, rapid activation of the peripheral immune system. J Cereb Blood Flow Metab 26:654–665PubMedGoogle Scholar
  102. Ong LM, Fan X, Chu PPY, Gay FPH, Bari S, Ang JML, Li Z, Chen J, Lim SK, Bunte RM, Hwang WYK (2012) Cotransplantation of ex vivo expanded and unexpanded cord blood units in immunodeficient mice using insulin growth factor binding protein-2-augmented mesenchymal cell cocultures. Biol Blood Marrow Transplant 18:674–682PubMedGoogle Scholar
  103. Park KS, Kim YS, Kim JH, Choi BK, Kim SH, Oh SH, Ahn YR, Lee MS, Lee MK, Park JB, Kwon CH, Joh JW, Kim KW, Kim SJ (2009) Influence of human allogenic bone marrow and cord blood-derived mesenchymal stem cell secreting trophic factors on ATP (adenosine—5’-triphosphate)/ADP (adenosine—5’-diphosphate) ratio and insulin secretory function of isolated human islets from cadaveric donor. Transplant Proc 41:3813–3818PubMedGoogle Scholar
  104. Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, Oz MC, Hicklin DJ, Witte L, Moore MAS, Rafii S (2000) Expression of VEGFR-2 and AC133 by circulating human CD34 (+) cells identifies a population of functional endothelial precursors. Blood 95:952–958PubMedGoogle Scholar
  105. Pimentel-Coelho PM, Magalhães ES, Lopes LM, deAzevedo LC, Santiago MF, Mendez-Otero R (2009) Human cord blood transplantation in a neonatal rat model of hypoxic-ischemic brain damage: functional outcome related to neuroprotection in the striatum. Stem Cells Dev 19:351–358Google Scholar
  106. Riegelsberger U-M, Deten A, Pösel C, Zille M, Kranz A, Boltze J, Wagner D-C (2011) Intravenous human umbilical cord blood transplantation for stroke: Impact on infarct volume and caspase-3-dependent cell death in spontaneously hypertensive rats. Exp Neurol 227:218–223PubMedGoogle Scholar
  107. Rock RB, Gekker G, Hu S, Sheng WS, Cheeran M, Lokensgard JR, Peterson PK (2004) Role of microglia in central nervous system infections. Clin Microbiol Rev 17:942–964 (table of contents)PubMedCentralPubMedGoogle Scholar
  108. Rosenkranz K, Meier C (2011) Umbilical cord blood cell transplantation after brain ischemia-from recovery of function to cellular mechanisms. Ann Anat 193:371–379PubMedGoogle Scholar
  109. Rosenkranz K, Kumbruch S, Tenbusch M, Marcus K, Marschner K, Dermietzel R, Meier C (2012) Transplantation of human umbilical cord blood cells mediated beneficial effects on apoptosis, angiogenesis and neuronal survival after hypoxic-ischemic brain injury in rats. Cell Tissue Res 348:429–438PubMedGoogle Scholar
  110. Rowe DD, Leonardo CC, Hall AA, Shahaduzzaman MD, Collier LA, Willing AE, Pennypacker KR (2010) Cord blood administration induces oligodendrocyte survival through alterations in gene expression. Brain Res 1366:172–188PubMedCentralPubMedGoogle Scholar
  111. Rowe DD, Leonardo CC, Recio JA, Collier LA, Willing AE, Pennypacker KR (2012) Human umbilical cord blood cells protect oligodendrocytes from brain ischemia through Akt signal transduction. J Biol Chem 287:4177–4187PubMedCentralPubMedGoogle Scholar
  112. Sanberg PR, Willing AE, Garbuzova-Davis S, Saporta S, Liu G, Sanberg CD, Bickford PC, Klasko SK, El-Badri NS (2005) Umbilical cord blood-derived stem cells and brain repair. Ann NY Acad Sci 1049:67–83PubMedGoogle Scholar
  113. Sanchez-Ramos JR, Song S, Kamath SG, Zigova T, Willing A, Cardozo-Pelaez F, Stedeford T, Chopp M, Sanberg PR (2001) Expression of neural markers in human umbilical cord blood. Exp Neurol 171:109–115PubMedGoogle Scholar
  114. Schabitz WR, Kollmar R, Schwaninger M, Juettler E, Bardutzky J, Scholzke MN, Sommer C, Schwab S (2003) Neuroprotective effect of granulocyte colony-stimulating factor after focal cerebral ischemia. Stroke 34:745–751PubMedGoogle Scholar
  115. Schroeter M, Jander S, Witte OW, Stoll G (1994) Local immune responses in the rat cerebral cortex after middle cerebral artery occlusion. J Neuroimmunol 55:195–203PubMedGoogle Scholar
  116. Seghatoleslam M, Jalali M, Nikravesh MR, Hamidi Alamdari D, Hosseini M, Fazel A (2013) Intravenous administration of human umbilical cord blood-mononuclear cells dose-dependently relieve neurologic deficits in rat intracerebral hemorrhage model. Ann Anat 195:39–49Google Scholar
  117. Seifert HA, Hall AA, Chapman CB, Collier LA, Willing AE, Pennypacker KR (2012) A transient decrease in spleen size following stroke corresponds to splenocyte release into systemic circulation. J Neuroimmune Pharmacol 7:1017–1024PubMedCentralPubMedGoogle Scholar
  118. Shahaduzzaman M, Golden JE, Green S, Gronda AE, Adrien E, Ahmed A, Sanberg PR, Bickford PC, Gemma C, Willing AE (2013) A single administration of human umbilical cord blood T cells produces long-lasting effects in the aging hippocampus. Age (Dordr) 35:2071–2087Google Scholar
  119. Shang J, Deguchi K, Ohta Y, Liu N, Zhang X, Tian F, Yamashita T, Ikeda Y, Matsuura T, Funakoshi H, Nakamura T, Abe K (2011) Strong neurogenesis, angiogenesis, synaptogenesis, and antifibrosis of hepatocyte growth factor in rats brain after transient middle cerebral artery occlusion. J Neurosci Res 89:86–95PubMedGoogle Scholar
  120. Shen J, Ishii Y, Xu G, Dang TC, Hamashima T, Matsushima T, Yamamoto S, Hattori Y, Takatsuru Y, Nabekura J, Sasahara M (2012) PDGFR-beta as a positive regulator of tissue repair in a mouse model of focal cerebral ischemia. J Cereb Blood Flow Metab 32:353–367PubMedCentralPubMedGoogle Scholar
  121. Smirkin A, Matsumoto H, Takahashi H, Inoue A, Tagawa M, Ohue S, Watanabe H, Yano H, Kumon Y, Ohnishi T, Tanaka J (2010) Iba1+/NG2+ macrophage-like cells expressing a variety of neuroprotective factors ameliorate ischemic damage of the brain. J Cereb Blood Flow Metab 30:603–615PubMedCentralPubMedGoogle Scholar
  122. Solomon EP, Berg LR, Martin DW (1999) Biology. Saunders College Publishing, OrlandoGoogle Scholar
  123. Stevens SL, Bao J, Hollis J, Lessov NS, Clark WM, Stenzel-Poore MP (2002) The use of flow cytometry to evaluate temporal changes in inflammatory cells following focal cerebral ischemia in mice. Brain Res 932:110–119PubMedGoogle Scholar
  124. Sun W, Buzanska L, Domanska-Janik K, Salvi RJ, Stachowiak MK (2005) Voltage-sensitive and ligand-gated channels in differentiating neural stem-like cells derived from the nonhematopoietic fraction of human umbilical cord blood. Stem Cells 23:931–945PubMedGoogle Scholar
  125. Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P, Figueiredo JL, Kohler RH, Chudnovskiy A, Waterman P, Aikawa E, Mempel TR, Libby P, Weissleder R, Pittet MJ (2009) Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325:612–616PubMedCentralPubMedGoogle Scholar
  126. Taguchi A, Soma T, Tanaka H, Kanda T, Nishimura H, Yoshikawa H, Tsukamoto Y, Iso H, Fujimori Y, Stern DM, Naritomi H, Matsuyama T (2004) Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model. J Clin Invest 114:330–338PubMedCentralPubMedGoogle Scholar
  127. Van Asch CJ, Luitse MJ, Rinkel GJ, van der Tweel I, Algra A, Klijn CJ (2010) Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol 9:167–176PubMedGoogle Scholar
  128. Van Furth R, Cohn ZA (1968) The origin and kinetics of mononuclear phagocytes. J Exp Med 128:415–435PubMedCentralPubMedGoogle Scholar
  129. Van Voorhis WC, Valinsky J, Hoffman E, Luban J, Hair LS, Steinman RM (1983) Relative efficacy of human monocytes and dendritic cells as accessory cells for T cell replication. J Exp Med 158:174–191PubMedGoogle Scholar
  130. Vanneaux V, El-Ayoubi F, Delmau C, Driancourt C, Lecourt S, Grelier A, Cras A, Cuccuini W, Soulier J, Lataillade JJ, Lebousse-Kerdiles MC, Oury JF, Sibony O, Marolleau JP, Benbunan M, Uzan G, Larghero J (2010) In vitro and in vivo analysis of endothelial progenitor cells from cryopreserved umbilical cord blood: are we ready for clinical application? Cell Transplant 19:1143–1155PubMedGoogle Scholar
  131. Vendrame M, Cassady CJ, Newcomb J, Butler T, Pennypacker KR, Zigova T, Davis Sanberg C, Sanberg PR, Willing AE (2004) Infusion of human umbilical cord blood cells in a rat model of stroke dose-dependently rescues behavioral deficits and reduces infarct volume. Stroke 35:2390–2395PubMedGoogle Scholar
  132. Vendrame M, Gemma C, De Mesquita D, Collier L, Bickford PC, Davis Sanberg C, Sanberg PR, Pennypacker KR, Willing AE (2005) Anti-inflammatory effects of human cord blood cells in a rat model of stroke. Stem Cells Dev 14:595–604PubMedGoogle Scholar
  133. Vendrame M, Gemma C, Pennypacker KR, Bickford PC, Davis Sanberg C, Sanberg PR, Willing AE (2006) Cord blood rescues stroke-induced changes in splenocyte phenotype and function. Exp Neurol 199:191–200PubMedGoogle Scholar
  134. Walczak P, Chen N, Hudson J, Zigova T, Sanchez-Ramos J, Sanberg PR, Willing AE (2007) Long-term cultured human umbilical cord neural-like cells transplanted into the striatum of NOD SCID mice. Brain Res Bull 14:155–163Google Scholar
  135. Walton M, Brown R, Gupta G, Joneckis C, Llave R (1996) Activase for Acute Ischemic stroke. Summary Basis for Approval. www.fda.govGoogle Scholar
  136. Wang J, Tang Y, Zhang W, Zhao H, Wang R, Yan Y, Xu L, Li P (2013a) Insulin-like growth factor-1 secreted by brain microvascular endothelial cells attenuates neuron injury upon ischemia. Febs J 280:3658–3668PubMedGoogle Scholar
  137. Wang X-L, Zhao Y-S, Hu M-Y, Sun Y-Q, Chen Y-X, Bi X-H (2013b) Umbilical cord blood cells regulate endogenous neural stem cell proliferation via hedgehog signaling in hypoxic ischemic neonatal rats. Brain Res 1518:26–35PubMedGoogle Scholar
  138. Weber C, Belge KU, von Hundelshausen P, Draude G, Steppich B, Mack M, Frankenberger M, Weber KS, Ziegler-Heitbrock HW (2000) Differential chemokine receptor expression and function in human monocyte subpopulations. J Leukocyte Biol 67:699–704PubMedGoogle Scholar
  139. Wedgwood JF, Weinberger BI, Hatam L, Palmer R (1997) Umbilical cord blood lacks circulating B lymphocytes expressing surface IgG or IgA. Clin Immunol Immunopathol 84:276–282PubMedGoogle Scholar
  140. Whedon MB, Wujcik D (eds) (1997) Blood and marrow stem cell transplantation: principles, practice, and nursing insights, 2nd edn. Jones & Bartlett Learning, SudburyGoogle Scholar
  141. Willing AE, Lixian J, Milliken M, Poulos S, Zigova T, Song S, Hart C, Sanchez-Ramos J, Sanberg PR (2003) Intravenous versus intrastriatal cord blood administration in a rodent model of stroke. J Neurosci Res 73:296–307PubMedGoogle Scholar
  142. Willing AE, Garbuzova-Davis SN, Zayko O, Derasari HM, Rawls AE, James CR, Mervis RF, Sanberg CD, Kuzmin-Nichols N, Sanberg PR (In Press) Repeated administrations of human umbilical cord blood cells improve disease outcomes in a mouse model of Sanfilippo Syndrome Type III B. Cell TransplantGoogle Scholar
  143. Womble TA, Green S, Shahaduzzaman M, Grieco J, Sanberg PR, Pennypacker KR, Willing AE (2014) Monocytes are essential for the neuroprotective effect of human cord blood cells following middle cerebral artery occlusion in rat. Mol Cell Neurosci 59:76–84PubMedGoogle Scholar
  144. Xia G, Hong X, Chen X, Lan F, Zhang G, Liao L (2010) Intracerebral transplantation of mesenchymal stem cells derived from human umbilical cord blood alleviates hypoxic ischemic brain injury in rat neonates. J Perinat Med 38:215–221PubMedGoogle Scholar
  145. Yang W-Z, Zhang Y, Wu F, Min W-P, Minev B, Zhang M, Luo X-L, Ramos F, Ichim TE, Riordan NH, Hu X (2010) Safety evaluation of allogeneic umbilical cord blood mononuclear cell therapy for degenerative conditions. J Transl Med 8:75PubMedCentralPubMedGoogle Scholar
  146. Yasuhara T, Hara K, Maki M, Xu L, Yu G, Ali MM, Masuda T, Yu SJ, Bae EK, Hayashi T, Matsukawa N, Kaneko Y, Kuzmin-Nichols N, Ellovitch S, Cruz EL, Klasko SK, Sanberg CD, Sanberg PR, Borlongan CV (2010a) Mannitol facilitates neurotrophic factor up-regulation and behavioural recovery in neonatal hypoxic-ischaemic rats with human umbilical cord blood grafts. J Cell Mol Med 14:914–921PubMedGoogle Scholar
  147. Yasuhara T, Hara K, Maki M, Xu L, Yu G, Ali MM, Masuda T, Yu SJ, Bae EK, Hayashi T, Matsukawa N, Kaneko Y, Kuzmin-Nichols N, Ellovitch S, Cruz EL, Klasko SK, Sanberg CD, Sanberg PR, Borlongan CV (2010b) Mannitol facilitates neurotrophic factor up-regulation and behavioural recovery in neonatal hypoxic-ischaemic rats with human umbilical cord blood grafts. J Cell Mol Med 14:914–921PubMedGoogle Scholar
  148. Zawadzka M, Lukasiuk K, Machaj EK, Pojda K, Kaminska B (2009) Lack of migration and neurological benefits after infusion of umbilical cord blood cells in ischemic brain injury. Acta Neurobiol Exp 69:46–51Google Scholar
  149. Zhang MJ, Sun JJ, Qian L, Liu Z, Zhang Z, Cao W, Li W, Xu Y (2011) Human umbilical mesenchymal stem cells enhance the expression of neurotrophic factors and protect ataxic mice. Brain Res 1402:122–131PubMedGoogle Scholar
  150. Zhao Y, Wang H, Mazzone T (2006) Identification of stem cells from human umbilical cord blood with embryonic and hematopoietic characteristics. Exp Cell Res 312:2454–2464PubMedGoogle Scholar
  151. Zhu W, Mao Y, Zhao Y, Zhou L-F, Wang Y, Zhu J-H, Zhu Y, Yang G-Y (2005) Transplantation of vascular endothelial growth factor-transfected neural stem cells into the rat brain provides neuroprotection after transient focal cerebral ischemia. Neurosurgery 57:325–333 (discussion 325–333)PubMedGoogle Scholar
  152. Ziegler-Heitbrock HW, Strobel M, Kieper D, Fingerle G, Schlunck T, Petersmann I, Ellwart J, Blumenstein M, Haas JG (1992) Differential expression of cytokines in human blood monocyte subpopulations. Blood 79:503–511PubMedGoogle Scholar
  153. Zigova T, Song S, Willing AE, Hudson JE, Newman MB, Saporta S, Sanchez-Ramos J, Sanberg PR (2002) Human umbilical cord blood cells express neural antigens after transplantation into the developing rat brain. Cell Transplant 11:265–274PubMedGoogle Scholar
  154. Zivin JA (1985) Cyproheptadine reduces or prevents ischemic central nervous system damage. Neurol 35:584–587Google Scholar
  155. Zwart I, Hill AJ, Al-Allaf F, Shah M, Girdlestone J, Sanusi ABR, Mehmet H, Navarrete R, Navarrete C, Jen L-S (2009) Umbilical cord blood mesenchymal stromal cells are neuroprotective and promote regeneration in a rat optic tract model. Exp Neurol 216:439–448PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Center for Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of MedicineUniversity of South FloridaTampaUSA

Personalised recommendations