Advertisement

Integer Vector Addition Systems with States

  • Christoph Haase
  • Simon Halfon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8762)

Abstract

This paper studies reachability, coverability and inclusion problems for Integer Vector Addition Systems with States (ℤ-VASS) and extensions and restrictions thereof. A ℤ-VASS comprises a finite-state controller with a finite number of counters ranging over the integers. Although it is folklore that reachability in ℤ-VASS is NP-complete, it turns out that despite their naturalness, from a complexity point of view this class has received little attention in the literature. We fill this gap by providing an in-depth analysis of the computational complexity of the aforementioned decision problems. Most interestingly, it turns out that while the addition of reset operations to ordinary VASS leads to undecidability and Ackermann-hardness of reachability and coverability, respectively, they can be added to ℤ-VASS while retaining NP-completeness of both coverability and reachability.

Keywords

Inclusion Problem Register Machine Partial Word Presburger Arithmetic Linear Diophantine Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bell, P., Potapov, I.: On undecidability bounds for matrix decision problems. Theor. Comput. Sci. 391(1-2), 3–13 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Borosh, I., Treybing, L.B.: Bounds on positive integral solutions of linear Diophantine equations. Proc. AMS 55, 299–304 (1976)CrossRefzbMATHGoogle Scholar
  3. 3.
    Buckheister, P., Zetzsche, G.: Semilinearity and context-freeness of languages accepted by valence automata. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 231–242. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Dufourd, C., Finkel, A., Schnoebelen, P.: Reset nets between decidability and undecidability. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 103–115. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Esparza, J.: Petri nets, commutative context-free grammars, and basic parallel processes. Fundam. Inform. 31(1), 13–25 (1997)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Finkel, A., Göller, S., Haase, C.: Reachability in register machines with polynomial updates. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 409–420. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Fraca, E., Haddad, S.: Complexity analysis of continuous petri nets. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 170–189. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)Google Scholar
  9. 9.
    Ginsburg, S., Spanier, E.H.: Semigroups, Presburger formulas and languages. Pac. J. Math. 16(2), 285–296 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Grädel, E.: Dominoes and the complexity of subclasses of logical theories. Ann. Pure Appl. Logic 43(1), 1–30 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Greibach, S.A.: Remarks on blind and partially blind one-way multicounter machines. Theor. Comput. Sci. 7(3), 311–324 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Haase, C.: Subclasses of Presburger arithmetic and the weak EXP hierarchy. In: Proc. CSL-LICS (to appear, 2014)Google Scholar
  13. 13.
    Haase, C., Kreutzer, S., Ouaknine, J., Worrell, J.: Reachability in succinct and parametric one-counter automata. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 369–383. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Hack, M.: The equality problem for vector addition systems is undecidable. Theor. Comput. Sci. 2(1), 77–95 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hague, M., Lin, A.W.: Model checking recursive programs with numeric data types. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 743–759. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Huynh, D.T.: The complexity of equivalence problems for commutative grammars. Inform. Control 66(1-2), 103–121 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Huynh, D.T.: A simple proof for the \({\Sigma}^p_2\) upper bound of the inequivalence problem for semilinear sets. Elektron. Inform. Kybernet. 22(4), 147–156 (1986)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Jančar, P.: Nonprimitive recursive complexity and undecidability for Petri net equivalences. Theor. Comput. Sci. 256(1-2), 23–30 (2001)CrossRefzbMATHGoogle Scholar
  19. 19.
    Kopczyński, E., To, A.W.: Parikh images of grammars: Complexity and applications. In: Proc. LICS, pp. 80–89 (2010)Google Scholar
  20. 20.
    Lipton, R.: The reachability problem is exponential-space-hard. Technical report, Yale University, New Haven, CT (1976)Google Scholar
  21. 21.
    Mayr, E.W.: An algorithm for the general Petri net reachability problem. In: Proc. STOC, pp. 238–246. ACM, New York (1981)Google Scholar
  22. 22.
    Plandowski, W., Rytter, W.: Complexity of language recognition problems for compressed words. In: Karhumäki, J., Maurer, H.A., Păun, G., Rozenberg, G. (eds.) Jewels are Forever, pp. 262–272 (1999)Google Scholar
  23. 23.
    Rackoff, C.: The covering and boundedness problems for vector addition systems. Theor. Comput. Sci. 6(2), 223–231 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Reichert, J.: On the complexity of counter reachability games. In: Abdulla, P.A., Potapov, I. (eds.) RP 2013. LNCS, vol. 8169, pp. 196–208. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  25. 25.
    Schnoebelen, P.: Revisiting ackermann-hardness for lossy counter machines and reset petri nets. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 616–628. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  26. 26.
    Seidl, H., Schwentick, T., Muscholl, A., Habermehl, P.: Counting in trees for free. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 1136–1149. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Christoph Haase
    • 1
  • Simon Halfon
    • 1
  1. 1.Laboratoire Spécification et Vérification (LSV)CNRS École Normale Supérieure (ENS) de CachanFrance

Personalised recommendations