Synthesising Succinct Strategies in Safety and Reachability Games

  • Gilles Geeraerts
  • Joël Goossens
  • Amélie Stainer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8762)


We introduce general techniques to compute, efficiently, succinct representations of winning strategies in safety and reachability games. Our techniques adapt the antichain framework to the setting of games, and rely on the notion of turn-based alternating simulation, which is used to formalise natural relations that exist between the states of those games in many applications. In particular, our techniques apply to the realisability problem of LTL [8], to the synthesis of real-time schedulers for multiprocessor platforms [4], and to the determinisation of timed automata [3] — three applications where the size of the game one needs to solve is at least exponential in the size of the problem description, and where succinct strategies are particularly crucial in practice.


Winning Strategy Sporadic Task Simulation Relation Winning State Maximal Antichain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Dill, D.: A theory of timed automata. TCS 126(2), 183–235 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.Y.: Alternating refinement relations. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 163–178. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Bertrand, N., Stainer, A., Jéron, T., Krichen, M.: A game approach to determinize timed automata. In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 245–259. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Bonifaci, V., Marchetti-Spaccamela, A.: Feasibility analysis of sporadic real-time multiprocessor task systems. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part II. LNCS, vol. 6347, pp. 230–241. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Bouton, C.: Nim, a game with a complete mathematical theory. Ann. Math. 3, 35–39 (1902)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algorithms for the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Doyen, L., Raskin, J.-F.: Antichain algorithms for finite automata. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 2–22. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Filiot, E., Jin, N., Raskin, J.: Antichains and compositional algorithms for LTL synthesis. FMSD 39(3), 261–296 (2011)zbMATHGoogle Scholar
  9. 9.
    Geeraerts, G., Goossens, J., Lindström, M.: Multiprocessor schedulability of arbitrary-deadline sporadic tasks: complexity and antichain algorithm. RTS 49(2), 171–218 (2013)zbMATHGoogle Scholar
  10. 10.
    Geeraerts, G., Goossens, J., Stainer, A.: Computing succinct strategies in safety games. CoRR abs/1404.6228,
  11. 11.
    Neider, D.: Small Strategies for Safety Games. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 306–320. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    De Wulf, M., Doyen, L., Maquet, N., Raskin, J.-F.: Antichains: Alternative algorithms for LTL satisfiability and model-checking. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 63–77. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Gilles Geeraerts
    • 1
  • Joël Goossens
    • 1
  • Amélie Stainer
    • 1
  1. 1.Département d’InformatiqueUniversité libre de BruxellesBrusselsBelgium

Personalised recommendations