Advertisement

Trace Inclusion for One-Counter Nets Revisited

  • Piotr Hofman
  • Patrick Totzke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8762)

Abstract

One-counter nets (OCN) consist of a nondeterministic finite control and a single integer counter that cannot be fully tested for zero. They form a natural subclass of both One-Counter Automata, which allow zero-tests and Petri Nets/VASS, which allow multiple such weak counters. The trace inclusion problem has recently been shown to be undecidable for OCN. In this paper, we contrast the complexity of two natural restrictions which imply decidability.

We show that trace inclusion between a OCN and a deterministic OCN is NL-complete, even with arbitrary binary-encoded initial countervalues as part of the input. Secondly, we show that the the trace universality problem of nondeterministic OCN, which is equivalent to checking trace inclusion between a finite and a OCN-process, is Ackermann-complete.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdulla, P.A., Cerans, K.: Simulation Is Decidable for One-Counter Nets. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 253–268. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Böhm, S., Göller, S., Jančar, P.: Equivalence of Deterministic One-Counter Automata is NL-complete. In: STOC, pp. 131–140 (2013)Google Scholar
  3. 3.
    Demri, S., Lazić, R.: LTL with the freeze quantifier and register automata. ACM Trans. Comput. Logic 10(3), 16:1–16:30 (2009)Google Scholar
  4. 4.
    Figueira, D., Figueira, S., Schmitz, S., Schnoebelen, P.: Ackermannian and Primitive-Recursive Bounds with Dickson’s Lemma. In: LICS, pp. 269–278 (2011)Google Scholar
  5. 5.
    Higuchi, K., Wakatsuki, M., Tomita, E.: Some Properties of Deterministic Restricted One-Counter Automata. In: IEICE E79-D.8, pp. 914–924 (July 1996)Google Scholar
  6. 6.
    Hofman, P., Lasota, S., Mayr, R., Totzke, P.: Simulation Over Onecounter Nets is PSPACE-Complete. In: FSTTCS, pp. 515–526 (2013)Google Scholar
  7. 7.
    Hofman, P., Mayr, R., Totzke, P.: Decidability of Weak Simulation on One-Counter Nets. In: LICS, pp. 203–212 (2013)Google Scholar
  8. 8.
    Hofman, P., Totzke, P.: Trace Inclusion for One-Counter Nets Revisited. In: CoRR abs/1404.5157 (2014) (full version of this paper)Google Scholar
  9. 9.
    Jančar, P.: Equivalences of Pushdown Systems Are Hard. In: Muscholl, A. (ed.) FOSSACS 2014 (ETAPS). LNCS, vol. 8412, pp. 1–28. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  10. 10.
    Jančar, P.: Undecidability of Bisimilarity for Petri Nets and Some Related Problems. TCS 148(2), 281–301 (1995)CrossRefzbMATHGoogle Scholar
  11. 11.
    Jančar, P., Esparza, J., Moller, F.: Petri Nets and Regular Processes. J. Comput. Syst. Sci. 59(3), 476–503 (1999)CrossRefzbMATHGoogle Scholar
  12. 12.
    Jančar, P., Kučera, A., Moller, F.: Simulation and Bisimulation over One-Counter Processes. In: STACS, pp. 334–345 (2000)Google Scholar
  13. 13.
    Sénizergues, G.: L(A) = L(B)? ENTCS 9, 43 (1997)Google Scholar
  14. 14.
    Stirling, C.: Deciding DPDA Equivalence Is Primitive Recursive. In: ICALP, pp. 821–832 (2002)Google Scholar
  15. 15.
    Totzke, P.: Inclusion Problems for One-Counter Systems. PhD thesis. LFCS, University of Edinburgh (2014)Google Scholar
  16. 16.
    Valiant, L.: Decision Procedures for Families of Deterministic Pushdown Automata. PhD thesis. University of Warwick (1973)Google Scholar
  17. 17.
    Valiant, L., Paterson, M.S.: Deterministic One-Counter Automata. JCSS 10(3), 340–350 (1975)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Piotr Hofman
    • 1
  • Patrick Totzke
    • 2
  1. 1.University of BayreuthGermany
  2. 2.LaBRIUniv. Bordeaux & CNRSFrance

Personalised recommendations