Swap Body Vehicle Routing Problem: A Heuristic Solution Approach

  • Sandra Huber
  • Martin Josef Geiger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8760)


A variant of the Vehicle Routing Problem, namely the Vehicle Routing Problem with Swap Bodies (SB-VRP) is investigated. This type of problem involves swap locations where different actions can take place. For example, the swap body can be parked in order to visit customers where only a truck configuration can be used. For supporting the planning of a SB-VRP, an Iterated Variable Neighborhood Search is formulated. Computational results are provided and the solvability of the model under different types of test instances, which are released by the VeRoLog Solver Challenge 2014, is assessed.


Transportation logistics vehicle routing problem swap bodies swap locations variable neighborhood search iterated local search 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cafieri, S., Hansen, P., Mladenović, N.: Computer solutions of the traveling salesman problem. The European Physical Journal B 87(5), 1–7 (2014)CrossRefGoogle Scholar
  2. 2.
    Caramia, M., Guerriero, F.: A heuristic approach for the truck and trailer routing problem. Journal of the Operational Research Society 61(7), 1168–1180 (2010)CrossRefzbMATHGoogle Scholar
  3. 3.
    Chao, I.M.: A tabu search method for the truck and trailer routing problem. Computers & Operations Research 29(1), 33–51 (2002)CrossRefzbMATHGoogle Scholar
  4. 4.
    Dalgaard, P.: Introductory Statistics with R. Statistics and Computing. Springer (2008)Google Scholar
  5. 5.
    Drexl, M.: Branch-and-price and heuristic column generation for the generalized truck-and-trailer routing problem. Journal of Quantitative Methods for Economics and Business Administration 12(1), 5–38 (2011)Google Scholar
  6. 6.
    Drexl, M.: Rich vehicle routing in theory and practice. Logistics Research 5(1-2), 47–63 (2012)CrossRefGoogle Scholar
  7. 7.
    Drexl, M.: Synchronization in vehicle routing - A survey of VRPs with multiple synchronization constraints. Transportation Science 46(3), 297–316 (2012)CrossRefGoogle Scholar
  8. 8.
    Drexl, M.: Applications of the vehicle routing problem with trailers and transshipments. European Journal of Operational Research 227(2), 275–283 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gerdessen, J.C.: Vehicle routing problem with trailers. European Journal of Operational Research 93(1), 135–147 (1996)CrossRefzbMATHGoogle Scholar
  10. 10.
    Glover, F.: Ejection chains, reference structures and alternating path methods for traveling salesman problems. Discrete Applied Mathematics 65(1-3), 223–253 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gündüz, H.I.: The single-stage location-routing problem with time windows. In: Böse, J.W., Hu, H., Jahn, C., Shi, X., Stahlbock, R., Voß, S. (eds.) ICCL 2011. LNCS, vol. 6971, pp. 44–58. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Heid, W., Hasle, G., Vigo, D.: Verolog solver challenge 2014 – VSC2014 problem description. In: VeRoLog (EURO Working Group on Vehicle Routing and Logistics Optimization) and PTV Group, pp. 1–6 (2014),
  13. 13.
    Laporte, G.: Fifty years in vehicle routing. European Journal of Operational Research 43(4), 408–416 (2009)MathSciNetGoogle Scholar
  14. 14.
    Lee, L.H., Tan, K.C., Ou, K., Chew, Y.H.: Vehicle capacity planning system: a case study on vehicle routing problem with time windows. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 33(2), 169–178 (2003)CrossRefGoogle Scholar
  15. 15.
    Lin, S.: Computer solutions of the traveling salesman problem. Bell System Technical Journal 44, 2245–2269 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lin, S.-W., Yu, V.F., Chou, S.-Y.: Solving the truck and trailer routing problem based on a simulated annealing heuristic. Computers & Operations Research 36(5), 1683–1692 (2009)CrossRefzbMATHGoogle Scholar
  17. 17.
    Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search. In: Glover, F., Kochenberger, G.A. (eds.) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 57, pp. 320–353. Springer (2003)Google Scholar
  18. 18.
    Malik, H.J., Mullen, K.: Applied Statistics for Business and Economics. Addison-Wesley, Menlo Park (1975)zbMATHGoogle Scholar
  19. 19.
    Mladenović, N., Hansen, P.: Variable neighborhood search. Computers & Operations Research 24(11), 1097–1100 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Scheuerer, S.: A tabu search method for the truck and trailer routing problem. Computers & Operations Research 33(4), 894–909 (2006)CrossRefzbMATHGoogle Scholar
  21. 21.
    Schulte, F., Voß, S., Wenzel, P.: Heuristic routing software for planning of combined road transport with swap bodies: A practical case. In: Proceedings of MKWI 2014 – Multikonferenz Wirtschaftsinformatik, February 25-28, pp. 1513–1524. Paderborn (2014)Google Scholar
  22. 22.
    Semet, F., Taillard, E.: Solving real-life vehicle routing problems efficiently using tabu search. Annals of Operations Research 41(4), 469–488 (1993)CrossRefGoogle Scholar
  23. 23.
    Tan, K.C., Chew, Y.H., Lee, L.H.: A hybrid multiobjective evolutionary algorithm for solving truck and trailer vehicle routing problems. European Journal of Operational Research 172(3), 855–885 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Toth, P., Vigo, D. (eds.): The Vehicle Routing Problem. Philadelphia Monograph on Discrete Mathematics and Applications. SIAM (2002)Google Scholar
  25. 25.
    Van Breedam, A.: Comparing descent heuristics and metaheuristics for the vehicle routing problem. Computers & Operations Research 28(4), 289–315 (2001)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sandra Huber
    • 1
  • Martin Josef Geiger
    • 1
  1. 1.University of the Federal Armed ForcesHelmut Schmidt UniversityHamburgGermany

Personalised recommendations