Advanced Topology Optimization Methods for Conceptual Architectural Design

  • Niels AageEmail author
  • Oded Amir
  • Anders Clausen
  • Lior Hadar
  • Dana Maier
  • Asbjørn Søndergaard
Conference paper


This paper presents a series of new, advanced topology optimization methods, developed specifically for conceptual architectural design of structures. The proposed computational procedures are implemented as components in the framework of a Grasshopper plugin, providing novel capacities in topological optimization: Interactive control and continuous visualization; embedding flexible voids within the design space; consideration of distinct tension / compression properties; and optimization of dual material systems. In extension, optimization procedures for skeletal structures such as trusses and frames are implemented. The developed procedures allow for the exploration of new territories in optimization of architectural structures, and offer new methodological strategies for bridging conceptual gaps between optimization and architectural practice.


Topology Optimization Design Space Architectural Design Void Space Orthotropic Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Ole Sigmund for plenty of fruitful discussions and suggestions, and for his active support in the development of the TopOpt plugin. Financial support for the second author, received from the European Commission Research Executive Agency, grant agreement PCIG12-GA-2012-333647, is gratefully acknowledged.


  1. Aage, N., Lazarov, B.S.: Parallel framework for topology optimization using the method of moving asymptotes. Struct. Multidiscip. Optim. 47(4), 493–505 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  2. Aage, N., Nobel-Jørgensen, M., Andreasen, C.S., Sigmund, O.: Interactive topology optimization on hand-held devices. Struct. Multidiscip. Optim. 47(1), 1–6 (2013)CrossRefGoogle Scholar
  3. Amir, O.: A topology optimization procedure for reinforced concrete structures. Comput. Struct. 114, 46–58 (2013)CrossRefGoogle Scholar
  4. Amir, O., Sigmund, O.: Reinforcement layout design for concrete structures based on continuum damage and truss topology optimization. Struct. Multidiscip. Optim. 47, 157–174 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  5. Amir, O., Aage, N., Lazarov, B.S.: On multigrid-CG for efficient topology optimization. Struct. Multidiscip. Optim. 48, 815–829 (2014)CrossRefMathSciNetGoogle Scholar
  6. Andreassen, E., Clausen, A., Schevenels, M., Lazarov, B.S., Sigmund, O.: Efficient topology optimization in MATLAB using 88 lines of code. Struct. Multidiscip. Optim. 43(1), 1–16 (2011)CrossRefzbMATHGoogle Scholar
  7. Beghini, A., Beghini, L., Baker, W.: Applications of structural optimization in architectural design. Struct. Congress 2013, 2499–2507 (2013)Google Scholar
  8. Bendsøe, M.P.: Optimal shape design as a material distribution problem. Struct. Optim. 1, 193–202 (1989)CrossRefGoogle Scholar
  9. Bendsøe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Meth. Appl. Mech. Eng. 71, 197–224 (1988)CrossRefGoogle Scholar
  10. Bendsøe, M.P., Sigmund, O.: Topology Optimization – Theory, Methods and Applications. Springer, Berlin/New York (2003)Google Scholar
  11. Besserud, K., Katz, N., Beghini, A.: Structural emergence: architectural and structural design collaboration at SOM. Archit. Des. 83(2), 48–55 (2013)Google Scholar
  12. Bogomolny, M., Amir, O.: Conceptual design of reinforced concrete structures using topology optimization with elasto-plastic material modeling. Int. J. Numer. Meth. Eng. 90, 1578–1597 (2012)CrossRefzbMATHGoogle Scholar
  13. Borel, P.I., Harpøth, A., Frandsen, L., Kristensen, M., Shi, P., Jensen, J., Sigmund, O.: Topology optimization and fabrication of photonic crystal structures. Opt. Express 12(9), 1996–2001 (2004)CrossRefGoogle Scholar
  14. Buswell, R.A., Soar, R.C., Gibb, A.G.F., Thorpe, A.: Freeform construction: mega-scalerapid manufacturing for construction. Autom. Constr. 16, 224–231 (2007)CrossRefGoogle Scholar
  15. Cai, K.: A simple approach to find optimal topology of a continuum with tension-only or compression-only material. Struct. Multidiscip. Optim. 43(6), 827–835 (2011)CrossRefGoogle Scholar
  16. Clausen, A., Aage, N., Sigmund, O.: Topology optimization with flexible void area. Struct. Multidiscip. Optim. (2014, in press)Google Scholar
  17. Davis, T.A.: Direct Methods for Sparse Linear Systems. SIAM, Philadelphia (2006)CrossRefzbMATHGoogle Scholar
  18. Dombernowsky, P., Søndergaard, A.: Unikabeton prototype. In: Fabricate: Making Digital Architecture. Riverside Architectural Press, Toronto (2011)Google Scholar
  19. Dombernowsky, P., Søndergaard, A.: Design, analysis and realization of topology optimized concrete structures. Int. Assoc. Shell Spat. Struct. 53, 209–216 (2012)Google Scholar
  20. Dorn, W.S., Gomory, R.E., Greenberg, H.J.: Automatic design of optimal structures. J. Mecanique 3(1), 25–52 (1964)Google Scholar
  21. Frattari, L.: The structural from: topology optimization in architecture and industrial design. Doctoral dissertation, School of Advanced Studies, University of Camerino (2011)Google Scholar
  22. Hemp, W.S.: Optimum structures. Clarendon, Oxford (1973)Google Scholar
  23. Huang, X., Xie, Y.M.: Evolutionary Topology Optimization of Continuum Structures: Methods and Applications. Wiley, Chichester (2010). 235 pp. ISBN 9780470746530CrossRefGoogle Scholar
  24. Jonsmann, J., Sigmund, O., Bouwstra, S.: Compliant electro-thermal microactuators. In: Micro Electro Mechanical Systems, pp. 588593. IEEE (1999)Google Scholar
  25. Kato, J., Ramm, E.: Optimization of fiber geometry for fiber reinforced composites considering damage. Finite Elem. Anal. Des. 46, 401–415 (2010)CrossRefGoogle Scholar
  26. Kato, J., Lipka, A., Ramm, E.: Multiphase material optimization for fiber reinforced composites with strain softening. Struct. Multidiscip. Optim. 39, 63–81 (2009)CrossRefGoogle Scholar
  27. Kirsch, U.: Structural Optimization. Springer, Berlin/New York (1993)CrossRefGoogle Scholar
  28. Le, T., Austin, S.: High-performance printing concrete for freeform building components. In: Proceedings of the FIB Symposium, PRAGUE 2011 (2011)Google Scholar
  29. Liu, S., Qiao, H.: Topology optimization of continuum structures with different tensile and compressive properties in bridge layout design. Struct. Multidiscip. Optim. 43(3), 369–380 (2011)CrossRefMathSciNetGoogle Scholar
  30. Martinez, P., Marti, P., Querin, O.M.: Growth method for size, topology, and geometry optimization of truss structures. Struct. Multidiscip. Optim. 33(1), 13–26 (2007)CrossRefGoogle Scholar
  31. Michell, A.G.M.: The limits of economy of material in frame-structures. Lond. Edinb. Dublin Philos. Mag. J. Sci. 8(47), 589–597 (1904)CrossRefzbMATHGoogle Scholar
  32. Mostafavi, S., Beltran, M. M., Biloria, N.: Performance Driven Design and Design Information Exchange (2013)Google Scholar
  33. Park, P., Gilbert, M., Tyas, A., Popovic-Larsen, O.: Potential use of structural layout optimization at the conceptual design stage. Int. J. Archit. Comput. 10, 13–32 (2012)CrossRefGoogle Scholar
  34. Pedersen, P.: On optimal orientation of orthotropic materials. Struct. Optim. 1(2), 101–106 (1989)CrossRefGoogle Scholar
  35. Rozvany, G.I.: Optimal Design of Flexural Systems: Beams, Grillages, Slabs, Plates, and Shells. Pergamon Press, Oxford/New York (1976)Google Scholar
  36. Sardan, O., Eichhorn, V., Petersen, D.H., Fatikow, S., Sigmund, O., Bøggild, P.: Rapid prototyping of nanotube-based devices using topology-optimized microgrippers. Nanotechnology 19(49), 495–503 (2008)CrossRefGoogle Scholar
  37. Sasaki, M., Itō, T., Isozaki, A.: Morphogenesis of Flux Structure. AA Publications, London (2007)Google Scholar
  38. Sigmund, O.: A 99 line topology optimization code written in Matlab. Struct. Multidiscip. Optim. 21(2), 120–127 (2001)CrossRefGoogle Scholar
  39. Sigmund, O., Bendsøe, M.P.: Topology optimization: from airplanes to nano-optics. In: Stubkjær, K., Kortenbach, T. (eds.) Bridging From Technology to Society. Technical University of Denmark, Lyngby (2004)Google Scholar
  40. Sigmund, O., Jensen, J.S.: Systematic design of phononic band–gap materials and structures by topology optimization. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 361(1806), 1001–1019 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  41. Sigmund, O., Torquato, S.: Design of materials with extreme thermal expansion using a three-phase topology optimization method. J. Mech. Phys. Solids 45(6), 1037–1067 (1997)CrossRefMathSciNetGoogle Scholar
  42. Søndergaard, A., Feringa, J.: An integral approach to structural optimization and fabrication. In: Acadia, 491–497 (2014)Google Scholar
  43. Søndergaard, A., Amir, O., Knauss, M.: Topology optimization and digital assembly of advanced space-frame structures. In: 2013 ACADIA Conference (2013)Google Scholar
  44. Stromberg, L.L., Beghini, A., Baker, W.F., Paulino, G.H.: Topology optimization for braced frames: combining continuum and beam/column elements. Eng. Struct. 37, 106–124 (2012)CrossRefGoogle Scholar
  45. The Mathworks.: MATLAB version (R2013a) (2013)Google Scholar
  46. Victoria, M., Querin, O.M., Martí, P.: Generation of strut-and-tie models by topology optimization using different material properties in tension and compression. Struct. Multidiscip. Optim. 44, 247–258 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Niels Aage
    • 1
    Email author
  • Oded Amir
    • 2
  • Anders Clausen
    • 1
  • Lior Hadar
    • 2
  • Dana Maier
    • 3
  • Asbjørn Søndergaard
    • 3
  1. 1.DTU – Technical University of DenmarkKongens LyngbyDenmark
  2. 2.Technion – Israel Institute of TechnologyHaifaIsrael
  3. 3.Aarhus School of ArchitectureAarhusDenmark

Personalised recommendations