LifeCLEF 2014: Multimedia Life Species Identification Challenges

  • Alexis Joly
  • Hervé Goëau
  • Hervé Glotin
  • Concetto Spampinato
  • Pierre Bonnet
  • Willem-Pier Vellinga
  • Robert Planque
  • Andreas Rauber
  • Robert Fisher
  • Henning Müller
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8685)

Abstract

Using multimedia identification tools is considered as one of the most promising solutions to help bridging the taxonomic gap and build accurate knowledge of the identity, the geographic distribution and the evolution of living species. Large and structured communities of nature observers (e.g. eBird, Xeno-canto, Tela Botanica, etc.) as well as big monitoring equipments have actually started to produce outstanding collections of multimedia records. Unfortunately, the performance of the state-of-the-art analysis techniques on such data is still not well understood and is far from reaching the real world’s requirements. The LifeCLEF lab proposes to evaluate these challenges around three tasks related to multimedia information retrieval and fine-grained classification problems in three living worlds. Each task is based on large and real-world data and the measured challenges are defined in collaboration with biologists and environmental stakeholders in order to reflect realistic usage scenarios. This paper presents more particularly the 2014 edition of LifeCLEF, i.e. the pilot one. For each of the three tasks, we report the methodology and the datasets as well as the official results and the main outcomes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    MAED 2012: Proceedings of the 1st ACM International Workshop on Multimedia Analysis for Ecological Data. ACM, New York (2012) 433127Google Scholar
  2. 2.
    Inria’s participation at ImageCLEF 2013 Plant Identification Task. In: CLEF (Online Working Notes/Labs/Workshop) 2013, Valencia, Espagne (2013)Google Scholar
  3. 3.
    Proc. of the first workshop on Machine Learning for Bioacoustics (2013)Google Scholar
  4. 4.
    Angelova, A., Zhu, S., Lin, Y., Wong, J., Shpecht, C.: Development and deployment of a large-scale flower recognition mobile app. Technical report (December 2012)Google Scholar
  5. 5.
    Aptoula, E., Yanikoglu, B.: Morphological features for leaf based plant recognition. In: Proc. IEEE Int. Conf. Image Process., Melbourne, Australia, p. 7 (2013)Google Scholar
  6. 6.
    Backes, A.R., Casanova, D., Bruno, O.M.: Plant leaf identification based on volumetric fractal dimension. International Journal of Pattern Recognition and Artificial Intelligence 23(6), 1145–1160 (2009)CrossRefGoogle Scholar
  7. 7.
    Baillie, J., Hilton-Taylor, C., Stuart, S.: 2004 iucn red list of threatened species. a global species assessment. IUCN, Gland, Switzerland and Cambridge, UK (2004)Google Scholar
  8. 8.
    Barnich, O., Van Droogenbroeck, M.: Vibe: A universal background subtraction algorithm for video sequences. IEEE Transactions on Image Processing 20(6), 1709–1724 (2011)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Blanc, K., Lingrand, D., Precioso, F.: Fish species recognition from video using svm classifier. In: Working Notes of CLEF 2014 Conference (2014)Google Scholar
  10. 10.
    Briggs, F., Lakshminarayanan, B., Neal, L., Fern, X.Z., Raich, R., Hadley, S.J., Hadley, A.S., Betts, M.G.: Acoustic classification of multiple simultaneous bird species: A multi-instance multi-label approach. The Journal of the Acoustical Society of America 131, 4640 (2012)CrossRefGoogle Scholar
  11. 11.
    Cai, J., Ee, D., Pham, B., Roe, P., Zhang, J.: Sensor network for the monitoring of ecosystem: Bird species recognition. In: 3rd International Conference on Intelligent Sensors, Sensor Networks and Information, ISSNIP 2007, pp. 293–298 (December 2007)Google Scholar
  12. 12.
    Cerutti, G., Tougne, L., Vacavant, A., Coquin, D.: A parametric active polygon for leaf segmentation and shape estimation. In: Bebis, G. (ed.) ISVC 2011, Part I. LNCS, vol. 6938, pp. 202–213. Springer, Heidelberg (2011)Google Scholar
  13. 13.
    Chen, Q., Abedini, M., Garnavi, R., Liang, X.: Ibm research australia at lifeclef2014: Plant identification task. In: Working notes of CLEF 2014 Conference (2014)Google Scholar
  14. 14.
    Concetto, S., Fisher, B., Boom, B.: Lifeclef fish identification task 2014. In: CLEF Working Notes (2014)Google Scholar
  15. 15.
    Dimitrovski, I., Madjarov, G., Lameski, P., Kocev, D.: Maestra at lifeclef 2014 plant task: Plant identification using visual data. In: Working Notes of CLEF 2014 Conference (2014)Google Scholar
  16. 16.
    Dufour, O., Artieres, T., Glotin, H., Giraudet, P.: Clusterized mel filter cepstral coefficients and support vector machines for bird song idenfication (2013)Google Scholar
  17. 17.
    Eyben, F., Wöllmer, M., Schuller, B.: Opensmile: the munich versatile and fast open-source audio feature extractor. In: Proceedings of the International Conference on Multimedia, pp. 1459–1462. ACM (2010)Google Scholar
  18. 18.
    Fakhfakh, S., Akrout, B., Tmar, M., Mahdi, W.: A visual search of multimedia documents in lifeclef 2014. In: Working Notes of CLEF 2014 Conference (2014)Google Scholar
  19. 19.
    Gaston, K.J., O’Neill, M.A.: Automated species identification: why not? 359(1444), 655–667 (2004)Google Scholar
  20. 20.
    Glotin, H., Sueur, J.: Overview of the first international challenge on bird classification (2013)Google Scholar
  21. 21.
    Goëau, H., Bonnet, P., Joly, A., Bakić, V., Barbe, J., Yahiaoui, I., Selmi, S., Carré, J., Barthélémy, D., Boujemaa, N.: et al. Pl@ ntnet mobile app. In: Proceedings of the 21st ACM International Conference on Multimedia, pp. 423–424. ACM (2013)Google Scholar
  22. 22.
    Goëau, H., Bonnet, P., Joly, A., Boujemaa, N., Barthélémy, D., Molino, J.-F., Birnbaum, P., Mouysset, E., Picard, M.: The ImageCLEF 2011 plant images classification task. In: CLEF Working Notes (2011)Google Scholar
  23. 23.
    Goëau, H., Bonnet, P., Joly, A., Yahiaoui, I., Barthelemy, D., Boujemaa, N., Molino, J.-F.: The imageclef 2012 plant identification task. In: CLEF Working Notes (2012)Google Scholar
  24. 24.
    Goëau, H., Glotin, H., Vellinga, W.-P., Rauber, A.: Lifeclef bird identification task (2014)Google Scholar
  25. 25.
    Goëau, H., Joly, A., Bonnet, P., Molino, J.-F., Barthélémy, D., Boujemaa, N.: Lifeclef plant identification task 2014. In: CLEF Working Notes 2014 (2014)Google Scholar
  26. 26.
    Goëau, H., Joly, A., Selmi, S., Bonnet, P., Mouysset, E., Joyeux, L., Molino, J.-F., Birnbaum, P., Bathelemy, D., Boujemaa, N.: Visual-based plant species identification from crowdsourced data. In: ACM Conference on Multimedia, pp. 813–814 (2011)Google Scholar
  27. 27.
    Goëau, H., Joly, A., Yahiaoui, I., Bakić, V., Anne, V.-B.: Pl@ntnet’s participation at lifeclef 2014 plant identification task. In: Working notes of CLEF 2014 Conference (2014)Google Scholar
  28. 28.
    Hazra, A., Deb, K., Kundu, S., Hazra, P., et al.: Shape oriented feature selection for tomato plant identification. International Journal of Computer Applications Technology and Research 2(4), 449–meta (2013)Google Scholar
  29. 29.
    Issolah, M., Lingrand, D., Precioso, F.: Plant species recognition using bag-of-word with svm classifier in the context of the lifeclef challenge. In: Working notes of CLEF 2014 Conference (2014)Google Scholar
  30. 30.
    Joalland, P.-H., Paris, S., Glotin, H.: Efficient instance-based fish species visual identification by global representation. In: Working Notes of CLEF 2014 Conference (2014)Google Scholar
  31. 31.
    Joly, A., Champ, J., Buisson, O.: Instance-based bird species identification with undiscriminant features pruning - lifeclef2014. In: Working Notes of CLEF 2014 Conference (2014)Google Scholar
  32. 32.
    Joly, A., Goeau, H., Bonnet, P., Bakić, V., Barbe, J., Selmi, S., Yahiaoui, I., Carré, J., Mouysset, E., Molino, J.-F., Boujemaa, N., Barthélémy, D.: Interactive plant identification based on social image data. Ecological Informatics (2013)Google Scholar
  33. 33.
    Joly, A., Goëau, H., Bonnet, P., Bakic, V., Molino, J.-F., Barthélémy, D., Boujemaa, N.: The Imageclef Plant Identification Task 2013. In: International Workshop on Multimedia Analysis for Ecological Data, Barcelone, Espagne (October 2013)Google Scholar
  34. 34.
    Karamti, H., Fakhfakh, S., Tmar, M., Gargouri, F.: Miracl at lifeclef 2014: Multi-organ observation for plant identification. In: Working notes of CLEF 2014 Conference (2014)Google Scholar
  35. 35.
    Kavasidis, I., Palazzo, S., Salvo, R., Giordano, D., Spampinato, C.: An innovative web-based collaborative platform for video annotation. In: Multimedia Tools and Applications, pp. 1–20 (2013)Google Scholar
  36. 36.
    Kebapci, H., Yanikoglu, B., Unal, G.: Plant image retrieval using color, shape and texture features. The Computer Journal 54(9), 1475–1490 (2011)CrossRefGoogle Scholar
  37. 37.
    Kumar, N., Belhumeur, P.N., Biswas, A., Jacobs, D.W., Kress, W.J., Lopez, I.C., Soares, J.V.B.: Leafsnap: A computer vision system for automatic plant species identification. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 502–516. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  38. 38.
    Lasseck, M.: Large-scale identification of birds in audio recordings. In: Working notes of CLEF 2014 Conference (2014)Google Scholar
  39. 39.
    Lee, D.-J., Schoenberger, R.B., Shiozawa, D., Xu, X., Zhan, P.: Contour matching for a fish recognition and migration-monitoring system. In: Optics East, pp. 37–48. International Society for Optics and Photonics (2004)Google Scholar
  40. 40.
    Martinez, R., Silvan, L., Villarreal, E.V., Fuentes, G., Meza, I.: Svm candidates and sparse representation for bird identification. In: Working notes of CLEF 2014 Conference (2014)Google Scholar
  41. 41.
    Mouine, S., Yahiaoui, I., Verroust-Blondet, A.: Advanced shape context for plant species identification using leaf image retrieval. In: ACM International Conference on Multimedia Retrieval, pp. 49:1–49:8 (2012)Google Scholar
  42. 42.
    Nilsback, M.-E., Zisserman, A.: Automated flower classification over a large number of classes. In: Indian Conference on Computer Vision, Graphics and Image Processing, pp. 722–729 (2008)Google Scholar
  43. 43.
    Northcott, J.: Overview of the lifeclef 2014 bird task. In: Working Notes of CLEF 2014 Conference (2014)Google Scholar
  44. 44.
    Paczolay, D., Bánhalmi, A., Nyúl, L., Bilicki, V., Sárosi, Á.: Wlab of university of szeged at lifeclef 2014 plant identification task. In: Working notes of CLEF 2014 Conference (2014)Google Scholar
  45. 45.
    Paris, S., Halkias, X., Glotin, H.: Sparse coding for histograms of local binary patterns applied for image categorization: toward a bag-of-scenes analysis. In: 2012 21st International Conference on Pattern Recognition (ICPR), pp. 2817–2820. IEEE (2012)Google Scholar
  46. 46.
    Ren, L.Y., William Dennis, J., Huy Dat, T.: Bird classification using ensemble classifiers. In: Working notes of CLEF 2014 Conference (2014)Google Scholar
  47. 47.
    Shortis, M.R., Ravanbakskh, M., Shaifat, F., Harvey, E.S., Mian, A., Seager, J.W., Culverhouse, P.F., Cline, D.E., Edgington, D.R.: A review of techniques for the identification and measurement of fish in underwater stereo-video image sequences. In: SPIE Optical Metrology 2013, pp. 87910G–87910G. International Society for Optics and Photonics (2013)Google Scholar
  48. 48.
    Spampinato, C., Beauxis-Aussalet, E., Palazzo, S., Beyan, C., Ossenbruggen, J., He, J., Boom, B., Huang, X.: A rule-based event detection system for real-life underwater domain. Machine Vision and Applications 25(1), 99–117 (2014)CrossRefGoogle Scholar
  49. 49.
    Spampinato, C., Chen-Burger, Y.-H., Nadarajan, G., Fisher, R.B.: Detecting, tracking and counting fish in low quality unconstrained underwater videos. In: VISAPP (2), pp. 514–519. Citeseer (2008)Google Scholar
  50. 50.
    Spampinato, C., Giordano, D., Di Salvo, R., Chen-Burger, Y.-H.J., Fisher, R.B., Nadarajan, G.: Automatic fish classification for underwater species behavior understanding. In: Proceedings of ACM ARTEMIS 2010, pp. 45–50. ACM (2010)Google Scholar
  51. 51.
    Stowell, D., Plumbley, M.D.: Audio-only bird classification using unsupervised feature learning. In: Working notes of CLEF 2014 Conference (2014)Google Scholar
  52. 52.
    Sunderhauf, N., McCool, C., Upcroft, B., Tristan, P.: Fine-grained plant classification using convolutional neural networks for feature extraction. In: Working Notes of CLEF 2014 Conference (2014)Google Scholar
  53. 53.
    Szúcs, G., Dávid, P., Lovas, D.: Viewpoints combined classification method in image-based plant identification task. In: Working Notes of CLEF 2014 Conference (2014)Google Scholar
  54. 54.
    Towsey, M., Planitz, B., Nantes, A., Wimmer, J., Roe, P.: A toolbox for animal call recognition. Bioacoustics 21(2), 107–125 (2012)CrossRefGoogle Scholar
  55. 55.
    Trifa, V.M., Kirschel, A.N., Taylor, C.E., Vallejo, E.E.: Automated species recognition of antbirds in a mexican rainforest using hidden markov models. The Journal of the Acoustical Society of America 123, 2424 (2008)CrossRefGoogle Scholar
  56. 56.
    Vedaldi, A., Fulkerson, B.: Vlfeat: An open and portable library of computer vision algorithms. In: Proceedings of the International Conference on Multimedia, pp. 1469–1472. ACM (2010)Google Scholar
  57. 57.
    Vincent Koops, H., van Balen, J., Wiering, F.: A deep neural network approach to the lifeclef 2014 bird task. In: Working notes of CLEF 2014 Conference (2014)Google Scholar
  58. 58.
    Wheeler, Q.D., Raven, P.H., Wilson, E.O.: Taxonomy: Impediment or expedient? Science, 303(5656), 285 (2004)Google Scholar
  59. 59.
    Yanikoglu, B., Tolga, Y.S., Tirkaz, C., FuenCaglartes, E.: Sabanci-okan system at lifeclef 2014 plant identification competition. In: Working notes of CLEF 2014 Conference (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Alexis Joly
    • 1
  • Hervé Goëau
    • 2
  • Hervé Glotin
    • 3
  • Concetto Spampinato
    • 4
  • Pierre Bonnet
    • 5
  • Willem-Pier Vellinga
    • 6
  • Robert Planque
    • 6
  • Andreas Rauber
    • 7
  • Robert Fisher
    • 8
  • Henning Müller
    • 9
  1. 1.Inria, LIRMMMontpellierFrance
  2. 2.InriaSaclayFrance
  3. 3.IUF & Univ. de ToulonFrance
  4. 4.University of CataniaItaly
  5. 5.CIRADFrance
  6. 6.Xeno-canto foundationThe Netherlands
  7. 7.Vienna Univ. of Tech.Austria
  8. 8.Edinburgh Univ.UK
  9. 9.HES-SOSwitzerland

Personalised recommendations