Proactive Recommendation System for m-Tourism Application

  • Alexander Smirnov
  • Alexey Kashevnik
  • Andrew Ponomarev
  • Nikolay Shilov
  • Nikolay Teslya
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 194)

Abstract

In m-tourism applications, the proactive recommendations are especially actual for two major reasons: (1) the highly dynamic nature of the problem situation (the user continuously moves, the transport situation and weather conditions change); (2) limited possibilities of mobile devices for explicit information entry and checking large amounts of alternative solutions, but rich possibilities for tacit information entry via various sensors. The paper proposes an approach and research prototype based on the technologies of smart space and proactive recommendation systems. The architecture is based on the smart space technology. The system implementing the proposed approach helps the tourists to plan their attraction attending schedule based on the context information about the current situation in the region, its foreseen development, the tourist’s preferences and previous behavior, using their mobile devices.

Keywords

m-tourism infomobility proactive recommendation system smart space 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Artigues, C., Deswarte, Y., Guiochet, J., et al.: AMORES: an architecture for mobiquitous resilient systems. In: ARMOR 2012 Proceedings of the 1st European Workshop on AppRoaches to MObiquiTous Resilience, pp. 7:1–7:6. ACM, New York (2012)Google Scholar
  2. 2.
    Ambrosino, G., Nelson, J.D., Bastogi, B., Viti, A., Romazzotti, D., Ercoli, E.: The role and perspectives of the large-scale Flexible Transport Agency in the management of public transport in urban areas. In: Ambrosino, G., Boero, M., Nelson, J.D., Romanazzo, M. (eds.) Infomobility Systems and Sustainable Transport Services, pp. 156–165. ENEA, Rome (2010)Google Scholar
  3. 3.
    McKinsey Global Institute, http://www.mckinsey.com/
  4. 4.
    Woerdnl, W., Huebner, J., Bader, R., Gallego-Vico, D.: A Model for Proactivity in Mobile, Context-Aware Recommender Systems. In: Proceedings of the Fifth ACM Conference on Recommender Systems, pp. 273–276 (2011)Google Scholar
  5. 5.
    Ricci, F.: Mobile Recommender Systems. J. of IT & Tourism 12, 205–231 (2011)Google Scholar
  6. 6.
    Modsching, M., Kramer, R., ten Hagen, K., Gretzel, U.: Effectiveness of mobile recommender systems for tourist destinations: A user evaluation. In: Yorke-Smith, N. (ed.) Interaction Challenges for Intelligent Assistants: Papers from the AAAI Spring Symposium. Technical Report SS-07-04, pp. 88–89 (2007)Google Scholar
  7. 7.
    Bader, R., Siegmund, O., Woerndl, W.: A Study on User Acceptance of Proactive In-Vehicle Recommender Systems. In: 3rd International Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutomotiveUI 2011), Salzburg, Austria, pp. 47–54 (2011)Google Scholar
  8. 8.
    Smart Travelling web page, http://www.smart-travelling.net/en/
  9. 9.
    “New travel guide Triposo brings algorithms to apps,” The Independent (September 2011), http://www.independent.co.uk/travel/news-and-advice/new-travel-guide-triposo-brings-algorithms-to-apps-2353352.html
  10. 10.
  11. 11.
    Al-Rayes, K., Sevkli, A., Al-Moaiqel, H., Al-Ajlan, H., Al-Salem, K., Al- Fantoukh, N.: A Mobile Tourist Guide for Trip Planning. IEEE Multidisciplinary Engineering Education Magazine 6(4), 1–6 (2011)Google Scholar
  12. 12.
  13. 13.
  14. 14.
    Foursquare application, http://foursquare.com
  15. 15.
    Smart Museum, http://smartmuseum.ru/
  16. 16.
    Honkola, J., Laine, H., Brown, R., Tyrkko, O.: Smart-M3 Information Sharing Platform. In: Proc. IEEE Symp. Computers and Communications (ISCC 2010), pp. 1041–1046. IEEE Comp. Soc. (2010)Google Scholar
  17. 17.
    Weijun, Q.I.N., Yuanchun, S.H.I., Yue, S.U.O.: Ontology-based context-aware middleware for smart space. Journal of Tsinghua Science and Technology 12(6), 707–713 (2007)CrossRefGoogle Scholar
  18. 18.
    Wemlinger, Z., Holder, L.: The COSE Ontology: Bringing the Semantic Web to Smart Environments. In: Abdulrazak, B., Giroux, S., Bouchard, B., Pigot, H., Mokhtari, M. (eds.) ICOST 2011. LNCS, vol. 6719, pp. 205–209. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Garcia, I., Sebastia, L., Onaindia, E., Guzman, C.: A Group Recommender System for Tourist Activities. In: Di Noia, T., Buccafurri, F. (eds.) EC-Web 2009. LNCS, vol. 5692, pp. 26–37. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Kumar, A., Thambidurai, P.: Collaborative Web Recommendation Systems Based on an Effective Fuzzy Association Rule Mining Algorithm (FARM). Indian Journal of Computer Science and Engineering 1(3), 184–191 (2010)Google Scholar
  21. 21.
    Price, M., Golovchinsky, G., Schilit, B.N.: Linking By Inking: Trailblazing in a Paper-like Hypertext. In: Conference on Hypertext and Hypermedia, Pittsburgh, PA, USA, pp. 30–39 (1998)Google Scholar
  22. 22.
    Dey, A.K., Abowd, G.D.: CyberMinder: a context-aware system for supporting reminders. In: Symposium on Handheld and Ubiquitous Computing, Bristol, UK, pp. 172–186 (2000)Google Scholar
  23. 23.
    Hinze, A., Sachs, K., Buchmann, A.: Event-based applications and enabling technologies. In: Proceedings of the Third ACM International Conference on Distributed Event-Based Systems, Nashville, TN, USA, pp. 1:1–1:15 (2009)Google Scholar
  24. 24.
    Bellotti, V., Price, B., Rasmussen, P., Roberts, M., Schiano, D.J., Walendowski, A., Begole, B., Chi, E.H., Ducheneaut, N., Fang, J., Isaacs, E., King, T., Newman, M.W., Partridge, K.: Activity-based serendipitous recommendations with the Magitti mobile leisure guide. In: Conference on Human Factors in Computing Systems, New York, NY, USA, pp. 1157–1166 (2008)Google Scholar
  25. 25.
    Partridge, K., Price, B.: Enhancing Mobile Recommender Systems with Activity Inference. In: Houben, G.-J., McCalla, G., Pianesi, F., Zancanaro, M. (eds.) UMAP 2009. LNCS, vol. 5535, pp. 307–318. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  26. 26.
    Ciaramella, A., Cimino, M.G.C.A., Marcelloni, F., Straccia, U.: Combining Fuzzy Logic and Semantic Web to Enable Situation-Awareness in Service Recommendation. In: Bringas, P.G., Hameurlain, A., Quirchmayr, G. (eds.) DEXA 2010, Part I. LNCS, vol. 6261, pp. 31–45. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  27. 27.
    Worndl, W., Brocco, M., Eigner, R.: A Context-Aware Gas Station Recommender System for Vehicular Ad-Hoc Networks. In: Conference on Wireless Applications and Computing Conference, Amsterdam, Netherlands, pp. 101–108 (2008)Google Scholar
  28. 28.
    Turlier, S., Hahn, C., Gebhardt, S.: Browsing online music catalogs in a vehicle. In: Workshop on Mobile Cloud Media Computing, Firenze, Italy, pp. 53–58 (2010)Google Scholar
  29. 29.
    Smirnov, A., Levashova, T., Shilov, N.: Semantic-oriented support of interoperability between production information systems. International Journal of Product Development 4(3/4), 225–240 (2007)CrossRefGoogle Scholar
  30. 30.
    Fishbein, M., Ajzen, I.: Belief, attitude, intention, and behavior: An introduction to theory and research. Addison-Wesley, Reading (1975)Google Scholar
  31. 31.
    Smirnov, A., Kashevnik, A., Ponomarev, A., Shilov, N., Shchekotov, M., Teslya, N.: Recommendation System for Tourist Attraction Information Service. In: Proc. FRUCT Conf., pp. 140–147 (November 2013)Google Scholar
  32. 32.
    Smirnov, A., Shilov, N., Kashevnik, A., Teslya, N., Laizane, S.: Smart Space-based Ridesharing Service in e-Tourism Application for Karelia Region Accessibility. Ontology-based Approach and Implementation. In: Proc. 8th Int. Joint Conference on Software Technologies, Reykjavik, Iceland, July 29-31, pp. 591–598 (2013)Google Scholar
  33. 33.
    Smirnov, A., Kashevnik, A., Balandin, S.I., Laizane, S.: Intelligent Mobile Tourist Guide: Context-Based Approach and Implementation. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART 2013. LNCS, vol. 8121, pp. 94–106. Springer, Heidelberg (2013)Google Scholar
  34. 34.
    Krinkin, K., Yudenok, K.: Geo-coding in Smart Environment: Integration Principles of Smart-M3 and Geo2Tag. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART 2013. LNCS, vol. 8121, pp. 107–116. Springer, Heidelberg (2013)Google Scholar
  35. 35.
    International Data Corporation (IDC), Press Release, Android and iOS Combine for 91.1% of the Worldwide Smartphone OS Market in 4Q12 and 87.6% for the Year, http://www.idc.com/getdoc.jsp?containerId=prUS23946013 (last access date: April 30, 2014)
  36. 36.
    Smirnov, A., Shilov, N., Kashevnik, A., Teslya, N.: OpenStreetMap-Based Dynamic Ridesharing Service. In: Proc. Information Fusion and Geographic Information Systems, Sixth International Workshop, pp. 103–118 (May 2013)Google Scholar
  37. 37.
    World Weather Online, http://worldweatheronline.com
  38. 38.
    Hayes-Roth, B.: Human Planning Processes. Scientific Report (1980), http://www.rand.org/content/dam/rand/pubs/reports/2007/R2670.pdf

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Alexander Smirnov
    • 1
    • 2
  • Alexey Kashevnik
    • 1
  • Andrew Ponomarev
    • 1
  • Nikolay Shilov
    • 1
  • Nikolay Teslya
    • 1
  1. 1.St.Petersburg Institute for Informatics and Automation of the Russian Academy of SciencesSt.PetersburgRussia
  2. 2.ITMO UniversitySt. PetersburgRussia

Personalised recommendations