Advertisement

Carbon-Based Nanomaterials for Targeted Drug Delivery and Imaging

  • Vivek S. Thakare
  • D’Arcy Prendergast
  • Giorgia Pastorin
  • Sanyog JainEmail author
Chapter
Part of the Advances in Delivery Science and Technology book series (ADST)

Abstract

The progress in nanotechnology has witnessed the emergence of several types and forms of nanomaterials for biomedical applications. Amidst the myriad of nanocarriers currently being investigated, carbon nanotubes (CNTs) emerge as a unique and novel class of nanomaterials which have shown considerable promise in cancer therapy and diagnosis. Their unusually large surface area has enabled engineering of the surface topography of CNTs making them biocompatible and providing therapeutic benefits. Having the ability to encapsulate small molecules, being amiable for stacking interactions and conjugation, several reports indicate that nanotubes have improved the profiles of anticancer agents. Photothermal and photoacoustic therapy are new avenues which have been facilitated by CNTs due their ability to absorb near infrared (NIR) radiation, which has a high depth of penetration in human tissue. The current review aims to familiarize reader with the concept of carbon nanotubes and their role in cancer therapy and diagnosis based on recent reports.

Keywords

Carbon nanotubes (CNTs) Near-infrared radiation (NIR radiation) Functionalization Photothermal and photoacoustic therapy 

References

  1. 1.
    Fabbro C, Ali-Boucetta H, Da Ros T, Kostarelos K, Bianco A, Prato M (2012) Targeting carbon nanotubes against cancer. Chem Commun 48:3911–3926CrossRefGoogle Scholar
  2. 2.
    Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5:161–171PubMedCrossRefGoogle Scholar
  3. 3.
    Thakare VS, Das M, Jain AK, Patil S, Jain S (2010) Carbon nanotubes in cancer theragnosis. Nanomedicine 5:1277–1301PubMedCrossRefGoogle Scholar
  4. 4.
    Vashist SK, Zheng D, Pastorin G, Al-Rubeaan K, Luong JH, Sheu F-S (2011) Delivery of drugs and biomolecules using carbon nanotubes. Carbon 49:4077–4097CrossRefGoogle Scholar
  5. 5.
    Joselevich E (2004) Electronic structure and chemical reactivity of carbon nanotubes: a chemist’s view. Chemphyschem 5:619–624PubMedCrossRefGoogle Scholar
  6. 6.
    Peigney A, Laurent C, Flahaut E, Bacsa R, Rousset A (2001) Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 39:507–514CrossRefGoogle Scholar
  7. 7.
    Ye Y, Ahn C, Witham C, Fultz B, Liu J, Rinzler A, Colbert D, Smith K, Smalley R (1999) Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Appl Phys Lett 74:2307–2309CrossRefGoogle Scholar
  8. 8.
    Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, Alexander A (2006) Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92:5–22PubMedCrossRefGoogle Scholar
  9. 9.
    Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG (1996) Crystalline ropes of metallic carbon nanotubes. Science 273:483–487PubMedCrossRefGoogle Scholar
  10. 10.
    Foldvari M, Bagonluri M (2008) Carbon nanotubes as functional excipients for nanomedicines: I. Pharmaceutical properties. Nanomedicine 4:173–182PubMedCrossRefGoogle Scholar
  11. 11.
    Foldvari M, Bagonluri M (2008) Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues. Nanomedicine 4:183–200PubMedCrossRefGoogle Scholar
  12. 12.
    Lucente-Schultz RM, Moore VC, Leonard AD, Price BK, Kosynkin DV, Lu M, Partha R, Conyers JL, Tour JM (2009) Antioxidant single-walled carbon nanotubes. J Am Chem Soc 131:3934–3941PubMedCrossRefGoogle Scholar
  13. 13.
    Jia N, Lian Q, Shen H, Wang C, Li X, Yang Z (2007) Intracellular delivery of quantum dots tagged antisense oligodeoxynucleotides by functionalized multiwalled carbon nanotubes. Nano Lett 7:2976–2980PubMedCrossRefGoogle Scholar
  14. 14.
    Prakash S, Malhotra M, Shao W, Tomaro-Duchesneau C, Abbasi S (2011) Polymeric nanohybrids and functionalized carbon nanotubes as drug delivery carriers for cancer therapy. Adv Drug Deliv Rev 63:1340–1351PubMedCrossRefGoogle Scholar
  15. 15.
    Niyogi S, Hamon M, Hu H, Zhao B, Bhowmik P, Sen R, Itkis M, Haddon R (2002) Chemistry of single-walled carbon nanotubes. Acc Chem Res 35:1105–1113PubMedCrossRefGoogle Scholar
  16. 16.
    Jain AK, Dubey V, Mehra NK, Lodhi N, Nahar M, Mishra DK, Jain NK (2009) Carbohydrate-conjugated multiwalled carbon nanotubes: development and characterization. Nanomedicine 5:432–442PubMedCrossRefGoogle Scholar
  17. 17.
    Tasis D, Tagmatarchis N, Georgakilas V, Gamboz C, Soranzo M-R, Prato M (2003) Supramolecular organized structures of fullerene-based materials and organic functionalization of carbon nanotubes. C R Chim 6:597–602CrossRefGoogle Scholar
  18. 18.
    Ren Y, Pastorin G (2008) Incorporation of hexamethylmelamine inside capped carbon nanotubes. Adv Mater 20:2031–2036CrossRefGoogle Scholar
  19. 19.
    Chen Z, Pierre D, He H, Tan S, Pham-Huy C, Hong H, Huang J (2011) Adsorption behavior of epirubicin hydrochloride on carboxylated carbon nanotubes. Int J Pharm 405:153–161PubMedCrossRefGoogle Scholar
  20. 20.
    Tripisciano C, Kraemer K, Taylor A, Borowiak-Palen E (2009) Single-wall carbon nanotubes based anticancer drug delivery system. Chem Phys Lett 478:200–205CrossRefGoogle Scholar
  21. 21.
    de Leon A, Jalbout AF, Basiuk VA (2008) SWNT–amino acid interactions: a theoretical study. Chem Phys Lett 457:185–190, http://dx.doi.org/10.1016/j.cplett.2008.03.079CrossRefGoogle Scholar
  22. 22.
    Hilder TA, Hill JM (2008) Carbon nanotubes as drug delivery nanocapsules. Curr Appl Phys 8:258–261CrossRefGoogle Scholar
  23. 23.
    Ma P-C, Zhang Y (2014) Perspectives of carbon nanotubes/polymer nanocomposites for wind blade materials. Renew Sustain Energy Rev 30:651–660CrossRefGoogle Scholar
  24. 24.
    Yang D, Yang F, Hu J, Long J, Wang C, Fu D, Ni Q (2009) Hydrophilic multi-walled carbon nanotubes decorated with magnetite nanoparticles as lymphatic targeted drug delivery vehicles. Chem Commun:4447–4449. doi:  10.1039/b908012k
  25. 25.
    Gordon KB, Tajuddin A, Guitart J, Kuzel TM, Eramo LR, Vonroenn J (1995) Hand‐foot syndrome associated with liposome‐encapsulated doxorubicin therapy. Cancer 75:2169–2173PubMedCrossRefGoogle Scholar
  26. 26.
    Gabizon A, Isacson R, Libson E, Kaufman B, Uziely B, Catane R, Ben-Dor CG, Rabello E, Cass Y, Peretz T (1994) Clinical studies of liposome-encapsulated doxorubicin. Acta Oncol 33:779–786PubMedCrossRefGoogle Scholar
  27. 27.
    Ali-Boucetta H, Al-Jamal KT, McCarthy D, Prato M, Bianco A, Kostarelos K (2008) Multiwalled carbon nanotube–doxorubicin supramolecular complexes for cancer therapeutics. Chem Commun:459–461. doi:  10.1039/B712350G
  28. 28.
    Heister E, Neves V, Tîlmaciu C, Lipert K, Beltrán VS, Coley HM, Silva SRP, McFadden J (2009) Triple functionalisation of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancer therapy. Carbon 47:2152–2160CrossRefGoogle Scholar
  29. 29.
    Zhang X, Meng L, Lu Q, Fei Z, Dyson PJ (2009) Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. Biomaterials 30:6041–6047PubMedCrossRefGoogle Scholar
  30. 30.
    Liu Z, Sun X, Nakayama-Ratchford N, Dai H (2007) Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 1:50–56PubMedCrossRefGoogle Scholar
  31. 31.
    Chen M-L, He Y-J, Chen X-W, Wang J-H (2012) Quantum dots conjugated with Fe3O4-filled carbon nanotubes for cancer-targeted imaging and magnetically guided drug delivery. Langmuir 28:16469–16476PubMedCrossRefGoogle Scholar
  32. 32.
    Wen S, Liu H, Cai H, Shen M, Shi X (2013) Drug delivery: targeted and ph-responsive delivery of doxorubicin to cancer cells using multifunctional dendrimer-modified multi-walled carbon nanotubes (Adv. Healthcare Mater. 9/2013). Adv Healthc Mater 2:1181. doi: 10.1002/adhm.201370045 CrossRefGoogle Scholar
  33. 33.
    Modi CD, Patel SJ, Desai AB, Murthy R (2011) Functionalization and evaluation of PEGylated carbon nanotubes as novel drug delivery for methotrexate. J Appl Pharm Sci 1:103–108Google Scholar
  34. 34.
    Das M, Singh RP, Datir SR, Jain S (2013) Surface chemistry dependent “switch” regulates the trafficking and therapeutic performance of drug-loaded carbon nanotubes. Bioconjug Chem 24:626–639PubMedCrossRefGoogle Scholar
  35. 35.
    Guan H, McGuire MJ, Li S, Brown KC (2008) Peptide-targeted polyglutamic acid doxorubicin conjugates for the treatment of αvβ6-positive cancers. Bioconjug Chem 19:1813–1821PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Pastorin G, Wu W, Wieckowski S, Briand J-P, Kostarelos K, Prato M, Bianco A (2006) Double functionalisation of carbon nanotubes for multimodal drug delivery. Chem Commun:1182–1184. doi:  10.1039/B516309A
  37. 37.
    Samorì C, Ali-Boucetta H, Sainz R, Guo C, Toma FM, Fabbro C, da Ros T, Prato M, Kostarelos K, Bianco A (2010) Enhanced anticancer activity of multi-walled carbon nanotube–methotrexate conjugates using cleavable linkers. Chem Commun 46:1494–1496CrossRefGoogle Scholar
  38. 38.
    Stanton RA, Gernert KM, Nettles JH, Aneja R (2011) Drugs that target dynamic microtubules: a new molecular perspective. Med Res Rev 31:443–481PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Liu Z, Chen K, Davis C, Sherlock S, Cao Q, Chen X, Dai H (2008) Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 68:6652–6660PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Sobhani Z, Dinarvand R, Atyabi F, Ghahremani M, Adeli M (2011) Increased paclitaxel cytotoxicity against cancer cell lines using a novel functionalized carbon nanotube. Int J Nanomedicine 6:705–719PubMedCentralPubMedGoogle Scholar
  41. 41.
    Yang F, Fu DL, Long J, Ni QX (2008) Magnetic lymphatic targeting drug delivery system using carbon nanotubes. Med Hypotheses 70:765–767PubMedCrossRefGoogle Scholar
  42. 42.
    Oberoi HS, Nukolova NV, Kabanov AV, Bronich TK (2013) Nanocarriers for delivery of platinum anticancer drugs. Adv Drug Deliv Rev 65:1667–1685PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Dhar S, Liu Z, Thomale J, Dai H, Lippard SJ (2008) Targeted single-wall carbon nanotube-mediated Pt (IV) prodrug delivery using folate as a homing device. J Am Chem Soc 130:11467–11476PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Feazell RP, Nakayama-Ratchford N, Dai H, Lippard SJ (2007) Soluble single-walled carbon nanotubes as longboat delivery systems for platinum (IV) anticancer drug design. J Am Chem Soc 129:8438–8439PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Wu W, Li R, Bian X, Zhu Z, Ding D, Li X, Jia Z, Jiang X, Hu Y (2009) Covalently combining carbon nanotubes with anticancer agent: preparation and antitumor activity. ACS Nano 3:2740–2750PubMedCrossRefGoogle Scholar
  46. 46.
    Murakami T, Fan J, Yudasaka M, Iijima S, Shiba K (2006) Solubilization of single-wall carbon nanohorns using a PEG-doxorubicin conjugate. Mol Pharm 3:407–414PubMedCrossRefGoogle Scholar
  47. 47.
    Weng X, Wang M, Ge J, Yu S, Liu B, Zhong J, Kong J (2009) Carbon nanotubes as a protein toxin transporter for selective HER2-positive breast cancer cell destruction. Mol Biosyst 5:1224–1231PubMedCrossRefGoogle Scholar
  48. 48.
    Majoros IJ, Myc A, Thomas T, Mehta CB, Baker JR (2006) PAMAM dendrimer-based multifunctional conjugate for cancer therapy: synthesis, characterization, and functionality. Biomacromolecules 7:572–579PubMedCrossRefGoogle Scholar
  49. 49.
    Shi X, Wang SH, Shen M, Antwerp ME, Chen X, Li C, Petersen EJ, Huang Q, Weber WJ Jr, Baker JR Jr (2009) Multifunctional dendrimer-modified multiwalled carbon nanotubes: synthesis, characterization, and in vitro cancer cell targeting and imaging. Biomacromolecules 10:1744–1750PubMedCrossRefGoogle Scholar
  50. 50.
    Meng J, Duan J, Kong H, Li L, Wang C, Xie S, Chen S, Gu N, Xu H, Yang XD (2008) Carbon nanotubes conjugated to tumor lysate protein enhance the efficacy of an antitumor immunotherapy. Small 4:1364–1370PubMedCrossRefGoogle Scholar
  51. 51.
    Xiao Y, Gao X, Taratula O, Treado S, Urbas A, Holbrook RD, Cavicchi RE, Avedisian CT, Mitra S, Savla R (2009) Anti-HER2 IgY antibody-functionalized single-walled carbon nanotubes for detection and selective destruction of breast cancer cells. BMC Cancer 9:351PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Villa CH, Dao T, Ahearn I, Fehrenbacher N, Casey E, Rey DA, Korontsvit T, Zakhaleva V, Batt CA, Philips MR (2011) Single-walled carbon nanotubes deliver peptide antigen into dendritic cells and enhance IgG responses to tumor-associated antigens. ACS Nano 5:5300–5311PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Bhirde AA, Patel V, Gavard J, Zhang G, Sousa AA, Masedunskas A, Leapman RD, Weigert R, Gutkind JS, Rusling JF (2009) Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano 3:307–316PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    McDevitt MR, Chattopadhyay D, Kappel BJ, Jaggi JS, Schiffman SR, Antczak C, Njardarson JT, Brentjens R, Scheinberg DA (2007) Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. J Nucl Med 48:1180–1189PubMedCrossRefGoogle Scholar
  55. 55.
    Chakravarty P, Marches R, Zimmerman NS, Swafford AD-E, Bajaj P, Musselman IH, Pantano P, Draper RK, Vitetta ES (2008) Thermal ablation of tumor cells with antibody-functionalized single-walled carbon nanotubes. Proc Natl Acad Sci 105:8697–8702PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Kam NWS, O'Connell M, Wisdom JA, Dai H (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci U S A 102:11600–11605PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Liu Z, Cai W, He L, Nakayama N, Chen K, Sun X, Chen X, Dai H (2007) In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol 2:47–52PubMedCrossRefGoogle Scholar
  58. 58.
    Ou Z, Wu B, Xing D, Zhou F, Wang H, Tang Y (2009) Functional single-walled carbon nanotubes based on an integrin αvβ3 monoclonal antibody for highly efficient cancer cell targeting. Nanotechnology 20:105102PubMedCrossRefGoogle Scholar
  59. 59.
    Seow Y, Wood MJ (2009) Biological gene delivery vehicles: beyond viral vectors. Mol Ther 17:767–777PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Gao K, Huang L (2008) Nonviral methods for siRNA delivery. Mol Pharm 6:651–658CrossRefGoogle Scholar
  61. 61.
    El-Aneed A (2004) Current strategies in cancer gene therapy. Eur J Pharmacol 498:1–8PubMedCrossRefGoogle Scholar
  62. 62.
    Albertorio F, Hughes ME, Golovchenko JA, Branton D (2009) Base dependent DNA–carbon nanotube interactions: activation enthalpies and assembly–disassembly control. Nanotechnology 20:395101PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Krajcik R, Jung A, Hirsch A, Neuhuber W, Zolk O (2008) Functionalization of carbon nanotubes enables non-covalent binding and intracellular delivery of small interfering RNA for efficient knock-down of genes. Biochem Biophys Res Commun 369:595–602PubMedCrossRefGoogle Scholar
  64. 64.
    Pantarotto D, Singh R, McCarthy D, Erhardt M, Briand JP, Prato M, Kostarelos K, Bianco A (2004) Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem 116:5354–5358CrossRefGoogle Scholar
  65. 65.
    Zhang Z, Yang X, Zhang Y, Zeng B, Wang S, Zhu T, Roden RB, Chen Y, Yang R (2006) Delivery of telomerase reverse transcriptase small interfering RNA in complex with positively charged single-walled carbon nanotubes suppresses tumor growth. Clin Cancer Res 12:4933–4939PubMedCrossRefGoogle Scholar
  66. 66.
    Zhou F, Resasco DE, Chen WR, Xing D, Ou Z, Wu B (2009) Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes. J Biomed Opt 14:021009PubMedCrossRefGoogle Scholar
  67. 67.
    Ghosh S, Dutta S, Gomes E, Carroll D, D’Agostino R Jr, Olson J, Guthold M, Gmeiner WH (2009) Increased heating efficiency and selective thermal ablation of malignant tissue with DNA-encased multiwalled carbon nanotubes. ACS Nano 3:2667–2673PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    König K (2000) Multiphoton microscopy in life sciences. J Microsc 200:83–104PubMedCrossRefGoogle Scholar
  69. 69.
    Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19:316–317PubMedCrossRefGoogle Scholar
  70. 70.
    Levi-Polyachenko NH, Merkel EJ, Jones BT, Carroll DL, Stewart JH IV (2009) Rapid photothermal intracellular drug delivery using multiwalled carbon nanotubes. Mol Pharm 6:1092–1099PubMedCrossRefGoogle Scholar
  71. 71.
    Kim P, Odom TW, Huang J-L, Lieber CM (1999) Electronic density of states of atomically resolved single-walled carbon nanotubes: Van Hove singularities and end states. Phys Rev Lett 82:1225CrossRefGoogle Scholar
  72. 72.
    Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, Weisman RB (2002) Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298:2361–2366PubMedCrossRefGoogle Scholar
  73. 73.
    Govorov AO, Richardson HH (2007) Generating heat with metal nanoparticles. Nano Today 2:30–38CrossRefGoogle Scholar
  74. 74.
    Gannon CJ, Cherukuri P, Yakobson BI, Cognet L, Kanzius JS, Kittrell C, Weisman RB, Pasquali M, Schmidt HK, Smalley RE (2007) Carbon nanotube‐enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer 110:2654–2665PubMedCrossRefGoogle Scholar
  75. 75.
    Torti SV, Byrne F, Whelan O, Levi N, Ucer B, Schmid M, Torti FM, Akman S, Liu J, Ajayan PM (2007) Thermal ablation therapeutics based on CNx multi-walled nanotubes. Int J Nanomedicine 2:707PubMedCentralPubMedGoogle Scholar
  76. 76.
    Burke A, Ding X, Singh R, Kraft RA, Levi-Polyachenko N, Rylander MN, Szot C, Buchanan C, Whitney J, Fisher J (2009) Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation. Proc Natl Acad Sci 106:12897–12902PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Kang B, Yu D, Dai Y, Chang S, Chen D, Ding Y (2009) Cancer‐cell targeting and photoacoustic therapy using carbon nanotubes as “Bomb” agents. Small 5:1292–1301PubMedCrossRefGoogle Scholar
  78. 78.
    Hecht D (2009) “Nanobombs” shock cancer cells: nanomedicine. Mater Today 12:8, http://dx.doi.org/10.1016/S1369-7021(09)70099-9CrossRefGoogle Scholar
  79. 79.
    Singh R, Pantarotto D, McCarthy D, Chaloin O, Hoebeke J, Partidos CD, Briand J-P, Prato M, Bianco A, Kostarelos K (2005) Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors.J Am Chem Soc 127:4388–4396PubMedCrossRefGoogle Scholar
  80. 80.
    Manne U, Srivastava R-G, Srivastava S (2005) Keynote review: recent advances in biomarkers for cancer diagnosis and treatment. Drug Discov Today 10:965–976PubMedCrossRefGoogle Scholar
  81. 81.
    Xue Y, Bao L, Xiao X, Ding L, Lei J, Ju H (2011) Noncovalent functionalization of carbon nanotubes with lectin for label-free dynamic monitoring of cell-surface glycan expression. Anal Biochem 410:92–97PubMedCrossRefGoogle Scholar
  82. 82.
    Ananta JS, Matson ML, Tang AM, Mandal T, Lin S, Wong K, Wong ST, Wilson LJ (2009) Single-walled carbon nanotube materials as T 2-weighted MRI contrast agents. J Phys Chem C 113:19369–19372CrossRefGoogle Scholar
  83. 83.
    Kruss S, Hilmer AJ, Zhang J, Reuel NF, Mu B, Strano MS (2013) Carbon nanotubes as optical biomedical sensors. Adv Drug Deliv Rev 65:1933–1950PubMedCrossRefGoogle Scholar
  84. 84.
    Pramanik M, Song KH, Swierczewska M, Green D, Sitharaman B, Wang LV (2009) In vivo carbon nanotube-enhanced non-invasive photoacoustic mapping of the sentinel lymph node. Phys Med Biol 54:3291PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Pramanik M, Swierczewska M, Wang LV, Green D, Sitharaman B (2009) Single-walled carbon nanotubes as a multimodal-thermoacoustic and photoacoustic-contrast agent. J Biomed Opt 14:034018PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Adl Z, Liu Z, Bodapati S, Teed R, Vaithilingam S, Khuri-Yakub BT, Chen X, Dai H, Gambhir SS (2010) Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice. Nano Lett 10:2168–2172CrossRefGoogle Scholar
  87. 87.
    de la Zerda A, Bodapati S, Teed R, May SY, Tabakman SM, Liu Z, Khuri-Yakub BT, Chen X, Dai H, Gambhir SS (2012) Family of enhanced photoacoustic imaging agents for high-sensitivity and multiplexing studies in living mice. ACS Nano 6:4694–4701PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Maehashi K, Katsura T, Kerman K, Takamura Y, Matsumoto K, Tamiya E (2007) Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. Anal Chem 79:782–787PubMedCrossRefGoogle Scholar
  89. 89.
    Panchapakesan B, Cesarone G, Liu S, Teker K, Wickstrom E (2005) Single-wall carbon nanotubes with adsorbed antibodies detect live breast cancer cells. Nanobiotechnology 1:353–360CrossRefGoogle Scholar
  90. 90.
    Teker K (2008) Bioconjugated carbon nanotubes for targeting cancer biomarkers. Mater Sci Eng B 153:83–87CrossRefGoogle Scholar
  91. 91.
    Loeb S, Catalona WJ (2007) Prostate-specific antigen in clinical practice. Cancer Lett 249:30–39PubMedCrossRefGoogle Scholar
  92. 92.
    Kim JP, Lee BY, Lee J, Hong S, Sim SJ (2009) Enhancement of sensitivity and specificity by surface modification of carbon nanotubes in diagnosis of prostate cancer based on carbon nanotube field effect transistors. Biosens Bioelectron 24:3372–3378PubMedCrossRefGoogle Scholar
  93. 93.
    Yu X, Munge B, Patel V, Jensen G, Bhirde A, Gong JD, Kim SN, Gillespie J, Gutkind JS, Papadimitrakopoulos F (2006) Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. J Am Chem Soc 128:11199–11205PubMedCentralPubMedCrossRefGoogle Scholar
  94. 94.
    Bareket L, Rephaeli A, Berkovitch G, Nudelman A, Rishpon J (2010) Carbon nanotubes based electrochemical biosensor for detection of formaldehyde released from a cancer cell line treated with formaldehyde-releasing anticancer prodrugs. Bioelectrochemistry 77:94–99PubMedCrossRefGoogle Scholar
  95. 95.
    Dukovic G, White BE, Zhou Z, Wang F, Jockusch S, Steigerwald ML, Heinz TF, Friesner RA, Turro NJ, Brus LE (2004) Reversible surface oxidation and efficient luminescence quenching in semiconductor single-wall carbon nanotubes. J Am Chem Soc 126:15269–15276PubMedCrossRefGoogle Scholar
  96. 96.
    Heller DA, Jin H, Martinez BM, Patel D, Miller BM, Yeung T-K, Jena PV, Höbartner C, Ha T, Silverman SK (2009) Multimodal optical sensing and analyte specificity using single-walled carbon nanotubes. Nat Nanotechnol 4:114–120PubMedCrossRefGoogle Scholar
  97. 97.
    Bi S, Zhou H, Zhang S (2009) Multilayers enzyme-coated carbon nanotubes as biolabel for ultrasensitive chemiluminescence immunoassay of cancer biomarker. Biosens Bioelectron 24:2961–2966PubMedCrossRefGoogle Scholar
  98. 98.
    Wang C-H, Chiou S-H, Chou C-P, Chen Y-C, Huang Y-J, Peng C-A (2011) Photothermolysis of glioblastoma stem-like cells targeted by carbon nanotubes conjugated with CD133 monoclonal antibody. Nanomedicine 7:69–79PubMedCrossRefGoogle Scholar
  99. 99.
    Zhou F, Xing D, Wu B, Wu S, Ou Z, Chen WR (2010) New insights of transmembranal mechanism and subcellular localization of noncovalently modified single-walled carbon nanotubes. Nano Lett 10:1677–1681PubMedCrossRefGoogle Scholar
  100. 100.
    Zhou F, Wu S, Wu B, Chen WR, Xing D (2011) Mitochondria‐targeting single‐walled carbon nanotubes for cancer photothermal therapy. Small 7:2727–2735PubMedCrossRefGoogle Scholar
  101. 101.
    Galanzha EI, Kim JW, Zharov VP (2009) Nanotechnology‐based molecular photoacoustic and photothermal flow cytometry platform for in‐vivo detection and killing of circulating cancer stem cells. J Biophotonics 2:725–735PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Controlled Release Society 2015

Authors and Affiliations

  • Vivek S. Thakare
    • 1
  • D’Arcy Prendergast
    • 2
  • Giorgia Pastorin
    • 2
  • Sanyog Jain
    • 1
    Email author
  1. 1.Centre for Pharmaceutical Nanotechnology, Department of PharmaceuticsNational Institute of Pharmaceutical Education and Research (NIPER)MohaliIndia
  2. 2.Department of PharmacyNational University of SingaporeSingaporeSingapore

Personalised recommendations