Advertisement

Multifunctional Polymeric Nano-Carriers in Targeted Drug Delivery

  • Ashish Kumar Agrawal
  • Dileep Urimi
  • Sanyog JainEmail author
Chapter
Part of the Advances in Delivery Science and Technology book series (ADST)

Abstract

“The quest to achieve big shifted the focus of scientific community to small” seems to be quite strange to hear, but emergence of nanotechnology in the field of drug delivery made this wonder true. A meticulous look toward the evolution of nanotechnology clearly accentuates that the field has marched at a phenomenal pace with the emergence of nanoparticles like a “magic bullet.” Step-by-step engineering of the nanoparticles resulted in the development of multifunctional pharmaceutical nano-carriers combining multiple useful properties in single particle providing the theragnostic approach with improved safety and efficacy. This chapter elucidates in detail the concept of multifunctionality of polymeric nano-carriers for treatment of disease conditions particularly cancer. The chapter also covers the recent advances surrounding the multifunctionality of polymeric nanoparticles for improved therapeutic outcomes.

Keywords

Multifunctionality Nanoparticles Ligands Targeting Imaging 

Abbreviations

ADPA

Anthracene-9, 10-dipropionic acid, disodium salt

ASGP

Asialoglycoprotein

BBB

Blood–brain barrier

BMP

Bone morphogenetic protein

CDs

Cyclodextrins

CH

Chitosan

CLSM

Confocal laser scanning microscopy

CNS

Central nervous system

COX

Cyclo oxygenase

DNA

Deoxy nucleic acid

DOX

Doxorubicin

EC

Ethyl cellulose

ECMs

Extracellular matrices

EGF

Epidermal growth factor

EGFP

Expressing green fluorescent protein

EGFR

Epidermal growth factor receptor

EPR

Enhanced permeability and retention effect

FA

Folic acid

FDA

Food and Drug Administration

FGF

Fibroblast growth factor

FTIC

Fluorescein isothiocyanate

GA

Glycyrrhizinic acid

GL

Glycyrrhizin

HA

Hyaluronan

HBV

Hepatitis B virus

HCV

Hepatitis C virus

HER2

Human epidermal growth factor receptor 2

HPMC

Hydroxypropylmethylcellulose

mAb

Monoclonal antibodies

MC

Methyl cellulose

MDR

Multidrug resistance

MEND

Multifunctional envelope-type nano-device

MMPNs

multifunctional magneto-polymeric nanohybrids

MPAP

Myristoylated polyarginine peptides

MRI

Magnetic Resonance Imaging

mRNA

messenger RNA

NiMOS

Nanoparticles-in-microsphere oral system

NIRF

Near-infrared fluorescent dye

NPs

Nanoparticles

PAA

Polyacrylic cid

PBLA

Poly (β-benzyl l-aspartate)

PCL

Polycaprolactone

pDNA

Plasmid deoxyribonucleic acid

PEG

Polyethylene glycol

PEI

Polyethylenimine

P-gp

P-glycoprotein

PLA

Poly lactic acid

PLGA

(poly(lactic-co-glycolic) acid)

PLL

Poly (l-lysine)

PS

Polystyrene

PSS

Poly(styrenesulfonate)

PTX

Paclitaxel

QD

Quantum dots

RBITC

Rhodamine B isothiocyanate

RES

Reticuloendothelial system

RGD

Arginine–glycine–aspartic acid

RNA

Ribo nucleic acid

scAbPSCA

Single chain prostate stem cell antigen antibodies

scFv

Single-chain fragment variables

siRNAs

Small interfering RNA

SPECT

Single-photon emission computed tomography

SPIONs

Superparamagnetic iron oxide nanoparticles

TfRs

Transferrin receptors

TPGS

d-α-tocopheryl polyethylene glycol succinate

VEGF

Vascular endothelial growth factor

WGA

Wheat germ agglutinin

γ-PGA

γ-polyglutamic acid

References

  1. 1.
    Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3:16–20. doi: 10.1021/nn900002m PubMedGoogle Scholar
  2. 2.
    Singh R, Lillard JW Jr (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86:215–223. doi: 10.1016/j.yexmp.2008.12.004 PubMedCentralPubMedGoogle Scholar
  3. 3.
    Agrawal AK, Harde H, Thanki K, Jain S (2013) Improved stability and antidiabetic potential of insulin containing folic acid functionalized polymer stabilized multilayered liposomes following oral administration. Biomacromolecules 15:350–360. doi: 10.1021/bm401580k PubMedGoogle Scholar
  4. 4.
    Jain S, Indulkar A, Harde H, Agrawal AK (2014) Oral mucosal immunization using glucomannosylated bilosomes. J Biomed Nanotechnol 10:932–947. doi: 10.1166/jbn.2014.1800 PubMedGoogle Scholar
  5. 5.
    Jain S, Harde H, Indulkar A, Agrawal AK (2013) Improved stability and immunological potential of tetanus toxoid containing surface engineered bilosomes following oral administration. Nanomed Nanotechnol Biol Med 10:431–440. doi: 10.1016/j.nano.2013.08.012 Google Scholar
  6. 6.
    Jain S, Sharma JM, Agrawal AK, Mahajan RR (2013) Surface stabilized efavirenz nanoparticles for oral bioavailability enhancement. J Biomed Nanotechnol 9:1862–1874. doi: 10.1166/jbn.2013.1683 PubMedGoogle Scholar
  7. 7.
    Harde H, Agrawal AK, Jain S (2014) Development of stabilized glucomannosylated chitosan nanoparticles using tandem crosslinking method for oral vaccine delivery. Nanomedicine (Lond), 1–19. doi:10.2217/nnm.13.225Google Scholar
  8. 8.
    Agrawal A, Gupta P, Khanna A, Sharma R, Chandrabanshi H, Gupta N, Patil U, Yadav S (2010) Development and characterization of in situ gel system for nasal insulin delivery. Pharmazie 65:188–193. doi: 10.1691/ph.2010.9188 PubMedGoogle Scholar
  9. 9.
    Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20. doi: 10.1016/S0168-3659(00)00339-4 PubMedGoogle Scholar
  10. 10.
    Sanvicens N, Marco MP (2008) Multifunctional nanoparticles–properties and prospects for their use in human medicine. Trends Biotechnol 26:425–433. doi: 10.1016/j.tibtech.2008.04.005 PubMedGoogle Scholar
  11. 11.
    Pillai O, Panchagnula R (2001) Polymers in drug delivery. Curr Opin Chem Biol 5:447–451. doi: 10.1016/S1367-5931(00)00227-1 PubMedGoogle Scholar
  12. 12.
    Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126. doi: 10.1016/j.progpolymsci.2011.06.003 PubMedCentralPubMedGoogle Scholar
  13. 13.
    Sun G, Shen YI, Ho CC, Kusuma S, Gerecht S (2010) Functional groups affect physical and biological properties of dextran‐based hydrogels. J Biomed Mater Res A 93:1080–1090. doi: 10.1002/jbm.a.32604 PubMedGoogle Scholar
  14. 14.
    Serefoglou E, Oberdisse J, Staikos G (2007) Characterization of the soluble nanoparticles formed through coulombic interaction of bovine serum albumin with anionic graft copolymers at low pH. Biomacromolecules 8:1195–1199. doi: 10.1021/bm061094t PubMedGoogle Scholar
  15. 15.
    Chopra S, Mahdi S, Kaur J, Iqbal Z, Talegaonkar S, Ahmad FJ (2006) Advances and potential applications of chitosan derivatives as mucoadhesive biomaterials in modern drug delivery. J Pharm Pharmacol 58:1021–1032. doi: 10.1211/jpp.58.8.0002 PubMedGoogle Scholar
  16. 16.
    Yin L, Ding J, He C, Cui L, Tang C, Yin C (2009) Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery. Biomaterials 30:5691–5700. doi: 10.1016/j.biomaterials.2009.06.055 PubMedGoogle Scholar
  17. 17.
    Agrawal AK, Das M, Jain S (2012) In situ gel systems as ‘smart’ carriers for sustained ocular drug delivery. Expert Opin Drug Deliv 9:383–402. doi: 10.1517/17425247.2012.665367 PubMedGoogle Scholar
  18. 18.
    Choudhary H, Agrawal A, Malviya R, Yadav S, Jaliwala Y, Patil U (2010) Evaluation and optimization of preparative variables for controlled-release floating microspheres of levodopa/carbidopa. Pharmazie 65:194–198. doi: 10.1691/ph.2010.9288 PubMedGoogle Scholar
  19. 19.
    Kopeček J, Ulbrich K (1983) Biodegradation of biomedical polymers. Prog Polym Sci 9:1–58Google Scholar
  20. 20.
    Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55:329–347. doi: 10.1016/S0169-409X(02)00228-4 PubMedGoogle Scholar
  21. 21.
    Wu K-J, Wu C-S, Chang J-S (2007) Biodegradability and mechanical properties of polycaprolactone composites encapsulating phosphate-solubilizing bacterium Bacillus sp. PG01. Process Biochem 42:669–675Google Scholar
  22. 22.
    Richard A, Margaritis A (2001) Poly (glutamic acid) for biomedical applications. Crit Rev Biotechnol 21:219–232. doi: 10.1080/07388550108984171 PubMedGoogle Scholar
  23. 23.
    Jain S, Patil SR, Swarnakar NK, Agrawal AK (2012) Oral delivery of doxorubicin using novel polyelectrolyte-stabilized liposomes (layersomes). Mol Pharm 9:2626–2635. doi: 10.1021/mp300202c PubMedGoogle Scholar
  24. 24.
    Brannon-Peppas L, Blanchette JO (2012) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 64:206–212. doi: 10.1016/j.addr.2012.09.033 Google Scholar
  25. 25.
    Brigger I, Dubernet C, Couvreur P (2002) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 54:631–651. doi: 10.1016/S0169-409X(02)00044-3 PubMedGoogle Scholar
  26. 26.
    Das M, Mishra D, Maiti T, Basak A, Pramanik P (2008) Bio-functionalization of magnetite nanoparticles using an aminophosphonic acid coupling agent: new, ultradispersed, iron-oxide folate nanoconjugates for cancer-specific targeting. Nanotechnology 19:415101. doi: 10.1088/0957-4484/19/41/415101 PubMedGoogle Scholar
  27. 27.
    Cascante M, Centelles JJ, Veech RL, Lee W-NP, Boros LG (2000) Role of thiamin (vitamin B-1) and transketolase in tumor cell proliferation. Nutr Cancer 36:150–154. doi: 10.1207/S15327914NC3602_2 PubMedGoogle Scholar
  28. 28.
    Park JW, Benz CC, Martin FJ (2004) Future directions of liposome-and immunoliposome-based cancer therapeutics. Semin Oncol 31(6 Suppl 13):196–205PubMedGoogle Scholar
  29. 29.
    Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B: Biointerfaces 75:1–18. doi: 10.1016/j.colsurfb.2009.09.001 PubMedGoogle Scholar
  30. 30.
    Jain AK, Das M, Swarnakar NK, Jain S (2011) Engineered PLGA nanoparticles: an emerging delivery tool in cancer therapeutics. Crit Rev Ther Durg 28:1–45. doi: 10.1615/CritRevTherDrugCarrierSyst.v28.i1.10 Google Scholar
  31. 31.
    Shenoy D, Little S, Langer R, Amiji M (2005) Poly (ethylene oxide)-modified poly (β-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: part 2. In vivo distribution and tumor localization studies. Pharm Res 22:2107–2114PubMedCentralPubMedGoogle Scholar
  32. 32.
    Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM (1999) Polymeric systems for controlled drug release. Chem Rev 99:3181–3198. doi: 10.1021/cr940351u PubMedGoogle Scholar
  33. 33.
    Farokhzad OC, Cheng J, Teply BA, Sherifi I, Jon S, Kantoff PW, Richie JP, Langer R (2006) Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci U S A 103:6315–6320. doi: 10.1073/pnas.0601755103 PubMedCentralPubMedGoogle Scholar
  34. 34.
    Antony A (1992) The biological chemistry of folate receptors. Blood 79:2807–2820PubMedGoogle Scholar
  35. 35.
    Vidal JM, Koulibaly M, Jost JL, Duron JJ, Chigot JP, Vayre P, Aurengo A, Legrand JC, Rosselin G, Gespach C (1998) Differential transferrin receptor density in human colorectal cancer: a potential probe for diagnosis and therapy. Int J Oncol 13:871–875. doi: 10.3892/ijo.13.4.871
  36. 36.
    Rusch V, Klimstra D, Venkatraman E, Pisters PW, Langenfeld J, Dmitrovsky E (1997) Overexpression of the epidermal growth factor receptor and its ligand transforming growth factor alpha is frequent in resectable non-small cell lung cancer but does not predict tumor progression. Clin Cancer Res 3:515–522PubMedGoogle Scholar
  37. 37.
    Korc M, Chandrasekar B, Yamanaka Y, Friess H, Buchier M, Beger HG (1992) Overexpression of the epidermal growth factor receptor in human pancreatic cancer is associated with concomitant increases in the levels of epidermal growth factor and transforming growth factor alpha. J Clin Invest 90:1352–1360. doi: 10.1172/jci116001 PubMedCentralPubMedGoogle Scholar
  38. 38.
    Carvalho I, Milanezi F, Martins A, Reis RM, Schmitt F (2005) Overexpression of platelet-derived growth factor receptor alpha in breast cancer is associated with tumour progression. Breast Cancer Res 7:R788–R795. doi: 10.1186/bcr1304 PubMedCentralPubMedGoogle Scholar
  39. 39.
    Lewis GD, Lofgren JA, McMurtrey AE, Nuijens A, Fendly BM, Bauer KD, Sliwkowski MX (1996) Growth regulation of human breast and ovarian tumor cells by heregulin: evidence for the requirement of ErbB2 as a critical component in mediating heregulin responsiveness. Cancer Res 56:1457–1465PubMedGoogle Scholar
  40. 40.
    Dorsam RT, Gutkind JS (2007) G-protein-coupled receptors and cancer. Nat Rev Cancer 7:79–94. doi: 10.1038/nrc2069 PubMedGoogle Scholar
  41. 41.
    Rozengurt E, Guha S, Sinnett-Smith J (2002) Gastrointestinal peptide signalling in health and disease. Eur J Surg 587:23–38Google Scholar
  42. 42.
    Szepeshazi K, Schally AV, Nagy A, Halmos G (2005) Inhibition of growth of experimental human and hamster pancreatic cancers in vivo by a targeted cytotoxic bombesin analog. Pancreas 31:275–282PubMedGoogle Scholar
  43. 43.
    Liu G, Duranteau L, Carel J-C, Monroe J, Doyle DA, Shenker A (1999) Leydig-cell tumors caused by an activating mutation of the gene encoding the luteinizing hormone receptor. N Engl J Med 341:1731–1736. doi: 10.1056/NEJM199912023412304 PubMedGoogle Scholar
  44. 44.
    Parma J, Duprez L, Van Sande J, Cochaux P, Gervy C, Mockel J, Dumont J, Vassart G (1993) Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature 365:649–651. doi: 10.1038/365649a0 PubMedGoogle Scholar
  45. 45.
    Kukowska-Latallo JF, Candido KA, Cao Z, Nigavekar SS, Majoros IJ, Thomas TP, Balogh LP, Khan MK, Baker JR (2005) Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res 65:5317–5324. doi: 10.1158/0008-5472.CAN-04-3921 PubMedGoogle Scholar
  46. 46.
    Iinuma H, Maruyama K, Okinaga K, Sasaki K, Sekine T, Ishida O, Ogiwara N, Johkura K, Yonemura Y (2002) Intracellular targeting therapy of cisplatin‐encapsulated transferrin‐polyethylene glycol liposome on peritoneal dissemination of gastric cancer. Int J Cancer 99:130–137. doi: 10.1002/ijc.10242 PubMedGoogle Scholar
  47. 47.
    Ishida O, Maruyama K, Tanahashi H, Iwatsuru M, Sasaki K, Eriguchi M, Yanagie H (2001) Liposomes bearing polyethyleneglycol-coupled transferrin with intracellular targeting property to the solid tumors in vivo. Pharm Res 18:1042–1048. doi: 10.1023/A:1010960900254 PubMedGoogle Scholar
  48. 48.
    Ekblom P, Thesleff I, Lehto VP, Virtanen I (1983) Distribution of the transferrin receptor in normal human fibroblasts and fibrosarcoma cells. Int J Cancer 31:111–117. doi: 10.1002/ijc.2910310118 PubMedGoogle Scholar
  49. 49.
    Li J, Ji J, Holmes LM, Burgin KE, Barton LB, Yu X, Wagner TE, Wei Y (2004) Fusion protein from RGD peptide and Fc fragment of mouse immunoglobulin G inhibits angiogenesis in tumor. Cancer Gene Ther 11:363–370. doi: 10.1038/sj.cgt.7700707 PubMedGoogle Scholar
  50. 50.
    Ruoslahti E (1994) Cell adhesion and tumor metastasis. Princess Takamatsu Symp 24:99–105PubMedGoogle Scholar
  51. 51.
    Peer D, Margalit R (2004) Tumor-targeted hyaluronan nanoliposomes increase the antitumor activity of liposomal doxorubicin in syngeneic and human xenograft mouse tumor models. Neoplasia 6(4):343–353, doi:10.1593/neo.03460PubMedCentralPubMedGoogle Scholar
  52. 52.
    Hu Z, Sun Y, Garen A (1999) Targeting tumor vasculature endothelial cells and tumor cells for immunotherapy of human melanoma in a mouse xenograft model. Proc Natl Acad Sci U S A 96:8161–8166. doi: 10.1073/pnas.96.14.8161 PubMedCentralPubMedGoogle Scholar
  53. 53.
    Upadhyay KK, Le Meins JF, Misra A, Voisin P, Bouchaud V, Ibarboure E, Schatz C, Lecommandoux S (2009) Biomimetic doxorubicin loaded polymersomes from hyaluronan-block-poly(gamma-benzyl glutamate) copolymers. Biomacromolecules 10:2802–2808. doi: 10.1021/bm9006419 PubMedGoogle Scholar
  54. 54.
    Upadhyay KK, Bhatt AN, Mishra AK, Dwarakanath BS, Jain S, Schatz C, Le Meins JF, Farooque A, Chandraiah G, Jain AK, Misra A, Lecommandoux S (2010) The intracellular drug delivery and anti tumor activity of doxorubicin loaded poly(gamma-benzyl L-glutamate)-b-hyaluronan polymersomes. Biomaterials 31:2882–2892. doi: 10.1016/j.biomaterials.2009.12.043 PubMedGoogle Scholar
  55. 55.
    Upadhyay KK, Mishra AK, Chuttani K, Kaul A, Schatz C, Le Meins JF, Misra A, Lecommandoux S (2012) The in vivo behavior and antitumor activity of doxorubicin-loaded poly(gamma-benzyl l-glutamate)-block-hyaluronan polymersomes in Ehrlich ascites tumor-bearing BalB/c mice. Nanomedicine 8:71–80. doi: 10.1016/j.nano.2011.05.008 PubMedGoogle Scholar
  56. 56.
    Upadhyay KK, Bhatt AN, Castro E, Mishra AK, Chuttani K, Dwarakanath BS, Schatz C, Le Meins JF, Misra A, Lecommandoux S (2010) In vitro and in vivo evaluation of docetaxel loaded biodegradable polymersomes. Macromol Biosci 10:503–512. doi: 10.1002/mabi.200900415 PubMedGoogle Scholar
  57. 57.
    Pang Z, Gao H, Yu Y, Guo L, Chen J, Pan S, Ren J, Wen Z, Jiang X (2011) Enhanced intracellular delivery and chemotherapy for glioma rats by transferrin-conjugated biodegradable polymersomes loaded with doxorubicin. Bioconjug Chem 22:1171–1180. doi: 10.1021/bc200062q PubMedGoogle Scholar
  58. 58.
    Gabizon AA (2001) Pegylated liposomal doxorubicin: metamorphosis of an old drug into a new form of chemotherapy. Cancer Invest 19:424–436PubMedGoogle Scholar
  59. 59.
    Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760. doi: 10.1038/nnano.2007.387 PubMedGoogle Scholar
  60. 60.
    Goldenberg MM (1999) Trastuzumab, a recombinant DNA-derived humanized monoclonal antibody, a novel agent for the treatment of metastatic breast cancer. Clin Ther 21:309–318. doi: 10.1016/S0149-2918(00)88288-0 PubMedGoogle Scholar
  61. 61.
    Martiny-Baron G, Marmé D (1995) VEGF-mediated tumour angiogenesis: a new target for cancer therapy. Curr Opin Biotechnol 6:675–680. doi: 10.1016/0958-1669(95)80111-1 PubMedGoogle Scholar
  62. 62.
    Allen TM (2002) Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2:750–763. doi: 10.1038/nrc903 PubMedGoogle Scholar
  63. 63.
    Carter P (2001) Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer 1:118–129. doi: 10.1038/35101072 PubMedGoogle Scholar
  64. 64.
    Arnold DM, Dentali F, Crowther MA, Meyer RM, Cook RJ, Sigouin C, Fraser GA, Lim W, Kelton JG (2007) Systematic review: efficacy and safety of rituximab for adults with idiopathic thrombocytopenic purpura. Ann Intern Med 146:25–33. doi: 10.7326/0003-4819-146-1-200701020-00006 PubMedGoogle Scholar
  65. 65.
    Trail P, Willner D, Lasch S, Henderson A, Hofstead S, Casazza A, Firestone R, Hellstrom I, Hellstrom K (1993) Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates. Science 261:212–215. doi: 10.1126/science.8327892 PubMedGoogle Scholar
  66. 66.
    Tolcher AW, Sugarman S, Gelmon KA, Cohen R, Saleh M, Isaacs C, Young L, Healey D, Onetto N, Slichenmyer W (1999) Randomized phase II study of BR96-doxorubicin conjugate in patients with metastatic breast cancer. J Clin Oncol 17:478–478PubMedGoogle Scholar
  67. 67.
    White RR, Sullenger BA, Rusconi CP (2000) Developing aptamers into therapeutics. J Clin Invest 106:929–934. doi: 10.1172/JCI11325 PubMedCentralPubMedGoogle Scholar
  68. 68.
    Debets MF, Leenders WP, Verrijp K, Zonjee M, Meeuwissen SA, Otte‐Höller I, van Hest J (2013) Nanobody‐functionalized polymersomes for tumor‐vessel targeting. Macromol Biosci 13:938–945, doi:10.1002/mabi.201300039PubMedGoogle Scholar
  69. 69.
    Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62. doi: 10.1126/science.1104819 PubMedGoogle Scholar
  70. 70.
    Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6:273–286. doi: 10.1038/nrd2115 PubMedGoogle Scholar
  71. 71.
    Yang JC, Haworth L, Sherry RM, Hwu P, Schwartzentruber DJ, Topalian SL, Steinberg SM, Chen HX, Rosenberg SA (2003) A randomized trial of bevacizumab, an anti–vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med 349:427–434. doi: 10.1056/NEJMoa021491 PubMedCentralPubMedGoogle Scholar
  72. 72.
    Cobleigh MA, Langmuir VK, Sledge GW, Miller KD, Haney L, Novotny WF, Reimann JD, Vassel A (2003) A phase I/II dose-escalation trial of bevacizumab in previously treated metastatic breast cancer. Semin Oncol 30(5 Suppl 16):117–124PubMedGoogle Scholar
  73. 73.
    Mayer RJ (2004) Two steps forward in the treatment of colorectal cancer. N Engl J Med 350:2406–2408. doi: 10.1056/NEJMe048098 PubMedGoogle Scholar
  74. 74.
    Emanuel S, Gruninger RH, Fuentes-Pesquera A, Connolly PJ, Seamon JA, Hazel S, Tominovich R, Hollister B, Napier C, D’Andrea MR (2004) A vascular endothelial growth factor receptor-2 kinase inhibitor potentiates the activity of the conventional chemotherapeutic agents paclitaxel and doxorubicin in tumor xenograft models. Mol Pharmacol 66:635–647. doi: 10.1124/mol.104.000638 PubMedGoogle Scholar
  75. 75.
    Ma L, Francia G, Viloria-Petit A, Hicklin DJ, du Manoir J, Rak J, Kerbel RS (2005) In vitro procoagulant activity induced in endothelial cells by chemotherapy and antiangiogenic drug combinations: modulation by lower-dose chemotherapy. Cancer Res 65:5365–5373. doi: 10.1158/0008-5472.CAN-04-3156 PubMedGoogle Scholar
  76. 76.
    Tuettenberg J, Grobholz R, Korn T, Wenz F, Erber R, Vajkoczy P (2005) Continuous low-dose chemotherapy plus inhibition of cyclooxygenase-2 as an antiangiogenic therapy of glioblastoma multiforme. J Cancer Res Clin Oncol 131:31–40. doi: 10.1007/s00432-004-0620-5 PubMedGoogle Scholar
  77. 77.
    Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342. doi: 10.1056/NEJMoa032691 PubMedGoogle Scholar
  78. 78.
    Kabbinavar FF, Hambleton J, Mass RD, Hurwitz HI, Bergsland E, Sarkar S (2005) Combined analysis of efficacy: the addition of bevacizumab to fluorouracil/leucovorin improves survival for patients with metastatic colorectal cancer. J Clin Oncol 23:3706–3712. doi: 10.1200/JCO.2005.00.232 PubMedGoogle Scholar
  79. 79.
    McCarthy M (2003) Antiangiogenesis drug promising for metastatic colorectal cancer. Lancet 361:1959. doi: 10.1016/S0140-6736(03)13603-3 PubMedGoogle Scholar
  80. 80.
    Sengupta S, Eavarone D, Capila I, Zhao G, Watson N, Kiziltepe T, Sasisekharan R (2005) Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 436:568–572. doi: 10.1038/nature03794 PubMedGoogle Scholar
  81. 81.
    Donnenberg VS, Donnenberg AD (2005) Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis. J Clin Pharmacol 45:872–877. doi: 10.1177/0091270005276905 PubMedGoogle Scholar
  82. 82.
    Bradley G, Juranka PF, Ling V (1988) Mechanism of multidrug resistance. BBA-Rev Cancer 948:87–128. doi: 10.1016/0304-419X(88)90006-6 Google Scholar
  83. 83.
    Harris AL, Hochhauser D (1992) Mechanisms of multidrug resistance in cancer treatment. Acta Oncol 31:205–213. doi: 10.3109/02841869209088904 PubMedGoogle Scholar
  84. 84.
    Hayes JD, Pulford DJ (1995) The glut athione S-transferase supergene family: regulation of GST and the contribution of the lsoenzymes to cancer chemoprotection and drug resistance part I. Crit Rev Biochem Mol Biol 30:445–520. doi: 10.3109/10409239509083491 PubMedGoogle Scholar
  85. 85.
    Adams J, Cory S (2007) The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26:1324–1337. doi: 10.1038/sj.onc.1210220 PubMedCentralPubMedGoogle Scholar
  86. 86.
    Ferreira C, Tolis C, Giaccone G (1999) p53 and chemosensitivity. Ann Oncol 10:1011–1021. doi: 10.1023/A:1008361818480 PubMedGoogle Scholar
  87. 87.
    Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: role of ATP–dependent transporters. Nat Rev Cancer 2:48–58. doi: 10.1038/nrc706 PubMedGoogle Scholar
  88. 88.
    Takara K, Sakaeda T, Okumura K (2006) An update on overcoming MDR1-mediated multidrug resistance in cancer chemotherapy. Curr Pharm Des 12:273–286. doi: 10.2174/138161206775201965 PubMedGoogle Scholar
  89. 89.
    Ferry D, Traunecker H, Kerr D (1996) Clinical trials of P-glycoprotein reversal in solid tumours. Eur J Cancer 32:1070–1081. doi: 10.1016/0959-8049(96)00091-3 Google Scholar
  90. 90.
    Oh KT, Baik HJ, Lee AH, Oh YT, Youn YS, Lee ES (2009) The reversal of drug-resistance in tumors using a drug-carrying nanoparticular system. Int J Mol Sci 10:3776–3792. doi: 10.3390/ijms10093776 PubMedCentralPubMedGoogle Scholar
  91. 91.
    Palmeira A, Sousa E, Vasconcelos MH, Pinto MM (2012) Three decades of P-gp inhibitors: skimming through several generations and scaffolds. Curr Med Chem 19:1946–2025. doi: 10.2174/092986712800167392 PubMedGoogle Scholar
  92. 92.
    Davis ME, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7:771–782. doi: 10.1038/nrd2614 PubMedGoogle Scholar
  93. 93.
    Emilienne Soma C, Dubernet C, Bentolila D, Benita S, Couvreur P (2000) Reversion of multidrug resistance by co-encapsulation of doxorubicin and cyclosporin A in polyalkylcyanoacrylate nanoparticles. Biomaterials 21:1–7. doi: 10.1016/S0142-9612(99)00125-8 Google Scholar
  94. 94.
    Patil Y, Sadhukha T, Ma L, Panyam J (2009) Nanoparticle-mediated simultaneous and targeted delivery of paclitaxel and tariquidar overcomes tumor drug resistance. J Control Release 136:21–29. doi: 10.1016/j.jconrel.2009.01.021 PubMedGoogle Scholar
  95. 95.
    Hughes CS, Vaden SL, Manaugh CA, Price GS, Hudson L (1998) Modulation of doxorubicin concentration by cyclosporin A in brain and testicular barrier tissues expressing P-glycoprotein in rats. J Neurooncol 37:45–54. doi: 10.1023/A:1005900908540 PubMedGoogle Scholar
  96. 96.
    Erlichman C, Moore M, Thiessen JJ, Kerr IG, Walker S, Goodman P, Bjarnason G, DeAngelis C, Bunting P (1993) Phase I pharmacokinetic study of cyclosporin A combined with doxorubicin. Cancer Res 53:4837–4842PubMedGoogle Scholar
  97. 97.
    Kim JS, Rieter WJ, Taylor KM, An H, Lin W, Lin W (2007) Self-assembled hybrid nanoparticles for cancer-specific multimodal imaging. J Am Chem Soc 129:8962–8963. doi: 10.1021/ja073062z PubMedCentralPubMedGoogle Scholar
  98. 98.
    Rieter WJ, Kim JS, Taylor KM, An H, Lin W, Tarrant T, Lin W (2007) Hybrid silica nanoparticles for multimodal imaging. Angew Chem Int Ed 46:3680–3682. doi: 10.1002/anie.200604738 Google Scholar
  99. 99.
    Lee JH, Yw J, Yeon SI, Shin JS, Cheon J (2006) Dual‐mode nanoparticle probes for high‐performance magnetic resonance and fluorescence imaging of neuroblastoma. Angew Chem 118:8340–8342. doi: 10.1002/anie.200603052 Google Scholar
  100. 100.
    Bridot J-L, Faure A-C, Laurent S, Riviere C, Billotey C, Hiba B, Janier M, Josserand V, Coll J-L, Vander Elst L (2007) Hybrid gadolinium oxide nanoparticles: multimodal contrast agents for in vivo imaging. J Am Chem Soc 129:5076–5084. doi: 10.1021/ja068356j PubMedGoogle Scholar
  101. 101.
    Santra S, Bagwe RP, Dutta D, Stanley JT, Walter GA, Tan W, Moudgil BM, Mericle RA (2005) Synthesis and characterization of fluorescent, radio‐opaque, and paramagnetic silica nanoparticles for multimodal bioimaging applications. Adv Mater 17:2165–2169. doi: 10.1002/adma.200500018 Google Scholar
  102. 102.
    Kim J, Lee JE, Lee J, Jang Y, Kim SW, An K, Yu JH, Hyeon T (2006) Generalized fabrication of multifunctional nanoparticle assemblies on silica spheres. Angew Chem 118:4907–4911. doi: 10.1002/anie.200504107 Google Scholar
  103. 103.
    Medarova Z, Pham W, Farrar C, Petkova V, Moore A (2007) In vivo imaging of siRNA delivery and silencing in tumors. Nat Med 13:372–377. doi: 10.1038/nm1486 PubMedGoogle Scholar
  104. 104.
    Nasongkla N, Bey E, Ren J, Ai H, Khemtong C, Guthi JS, Chin S-F, Sherry AD, Boothman DA, Gao J (2006) Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett 6:2427–2430. doi: 10.1021/nl061412u PubMedGoogle Scholar
  105. 105.
    Pourtau L, Oliveira H, Thevenot J, Wan Y, Brisson AR, Sandre O, Miraux S, Thiaudiere E, Lecommandoux S (2013) Antibody‐functionalized magnetic polymersomes: in vivo targeting and imaging of bone metastases using high resolution MRI. Adv Healthc Mater 2:1420–1424. doi: 10.1002/adhm.201300061 PubMedGoogle Scholar
  106. 106.
    Yang J, Lee CH, Ko HJ, Suh JS, Yoon HG, Lee K, Huh YM, Haam S (2007) Multifunctional magneto‐polymeric nanohybrids for targeted detection and synergistic therapeutic effects on breast cancer. Angew Chem Int Ed 46:8836–8839. doi: 10.1002/anie.200703554 Google Scholar
  107. 107.
    Kim J, Lee JE, Lee SH, Yu JH, Lee JH, Park TG, Hyeon T (2008) Designed fabrication of a multifunctional polymer nanomedical platform for simultaneous cancer‐targeted imaging and magnetically guided drug delivery. Adv Mater 20:478–483. doi: 10.1002/adma.200701726 Google Scholar
  108. 108.
    Kim K, Kim JH, Park H, Kim Y-S, Park K, Nam H, Lee S, Park JH, Park R-W, Kim I-S (2010) Tumor-homing multifunctional nanoparticles for cancer theragnosis: simultaneous diagnosis, drug delivery, and therapeutic monitoring. J Control Release 146:219–227. doi: 10.1016/j.jconrel.2010.04.004 PubMedGoogle Scholar
  109. 109.
    van Vlerken LE, Duan Z, Little SR, Seiden MV, Amiji MM (2008) Biodistribution and pharmacokinetic analysis of paclitaxel and ceramide administered in multifunctional polymer-blend nanoparticles in drug resistant breast cancer model. Mol Pharm 5:516–526. doi: 10.1021/mp800030k PubMedCentralPubMedGoogle Scholar
  110. 110.
    Park H, Yang J, Lee J, Haam S, Choi I-H, Yoo K-H (2009) Multifunctional nanoparticles for combined doxorubicin and photothermal treatments. ACS Nano 3:2919–2926. doi: 10.1021/nn900215k PubMedGoogle Scholar
  111. 111.
    Cheng J, Teply BA, Sherifi I, Sung J, Luther G, Gu FX, Levy-Nissenbaum E, Radovic-Moreno AF, Langer R, Farokhzad OC (2007) Formulation of functionalized PLGA–PEG nanoparticles for in vivo targeted drug delivery. Biomaterials 28:869–876. doi: 10.1016/j.biomaterials.2006.09.047 PubMedCentralPubMedGoogle Scholar
  112. 112.
    Sun B, Ranganathan B, Feng S-S (2008) Multifunctional poly (d, l-lactide-co-glycolide)/montmorillonite (PLGA/MMT) nanoparticles decorated by Trastuzumab for targeted chemotherapy of breast cancer. Biomaterials 29:475–486. doi: 10.1016/j.biomaterials.2007.09.038 PubMedGoogle Scholar
  113. 113.
    Sun B, Feng S-S (2009) Trastuzumab-functionalized nanoparticles of biodegradable copolymers for targeted delivery of docetaxel. Nanomedicine (Lond) 4:431–445. doi: 10.2217/nnm.09.17 Google Scholar
  114. 114.
    Danhier F, Vroman B, Lecouturier N, Crokart N, Pourcelle V, Freichels H, Jérôme C, Marchand-Brynaert J, Feron O, Préat V (2009) Targeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with paclitaxel. J Control Release 140:166–173. doi: 10.1016/j.jconrel.2009.08.011 PubMedGoogle Scholar
  115. 115.
    Patil YB, Toti US, Khdair A, Ma L, Panyam J (2009) Single-step surface functionalization of polymeric nanoparticles for targeted drug delivery. Biomaterials 30:859–866. doi: 10.1016/j.biomaterials.2008.09.056 PubMedCentralPubMedGoogle Scholar
  116. 116.
    Shi D, Cho HS, Chen Y, Xu H, Gu H, Lian J, Wang W, Liu G, Huth C, Wang L (2009) Fluorescent polystyrene–Fe3O4 composite nanospheres for in vivo imaging and hyperthermia. Adv Mater 21:2170–2173. doi: 10.1002/adma.200803159 Google Scholar
  117. 117.
    Schleich N, Sibret P, Danhier P, Ucakar B, Laurent S, Muller R, Jérôme C, Gallez B, Préat V, Danhier F (2013) Dual anticancer drug/superparamagnetic iron oxide-loaded PLGA-based nanoparticles for cancer therapy and magnetic resonance imaging. Int J Pharm 447:94–101. doi: 10.1016/j.ijpharm.2013.02.042 PubMedGoogle Scholar
  118. 118.
    Kopelman R, Lee Koo Y-E, Philbert M, Moffat BA, Ramachandra Reddy G, McConville P, Hall DE, Chenevert TL, Bhojani MS, Buck SM (2005) Multifunctional nanoparticle platforms for in vivo MRI enhancement and photodynamic therapy of a rat brain cancer. J Magn Magn Mater 293:404–410. doi: 10.1016/j.jmmm.2005.02.061 Google Scholar
  119. 119.
    Reddy GR, Bhojani MS, McConville P, Moody J, Moffat BA, Hall DE, Kim G, Koo Y-EL, Woolliscroft MJ, Sugai JV (2006) Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin Cancer Res 12:6677–6686. doi: 10.1158/1078-0432.CCR-06-0946 PubMedGoogle Scholar
  120. 120.
    Chatterjee DK, Zhang Y (2007) Multi-functional nanoparticles for cancer therapy. Sci Technol Adv Mater 8:131–133. doi: 10.1016/j.stam.2006.09.008 Google Scholar
  121. 121.
    Pan J, Liu Y, Feng S-S (2010) Multifunctional nanoparticles of biodegradable copolymer blend for cancer diagnosis and treatment. Nanomedicine 5:347–360. doi: 10.2217/nnm.10.13 PubMedGoogle Scholar
  122. 122.
    Yang X, Grailer JJ, Rowland IJ, Javadi A, Hurley SA, Steeber DA, Gong S (2010) Multifunctional SPIO/DOX-loaded wormlike polymer vesicles for cancer therapy and MR imaging. Biomaterials 31:9065–9073. doi: 10.1016/j.biomaterials.2010.08.039 PubMedGoogle Scholar
  123. 123.
    Maeng JH, Lee D-H, Jung KH, Bae Y-H, Park I-S, Jeong S, Jeon Y-S, Shim C-K, Kim W, Kim J (2010) Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer. Biomaterials 31:4995–5006. doi: 10.1016/j.biomaterials.2010.02.068 PubMedGoogle Scholar
  124. 124.
    Ling Y, Wei K, Luo Y, Gao X, Zhong S (2011) Dual docetaxel/superparamagnetic iron oxide loaded nanoparticles for both targeting magnetic resonance imaging and cancer therapy. Biomaterials 32:7139–7150. doi: 10.1016/j.biomaterials.2011.05.089 PubMedGoogle Scholar
  125. 125.
    Cheng F-Y, Su C-H, Wu P-C, Yeh C-S (2010) Multifunctional polymeric nanoparticles for combined chemotherapeutic and near-infrared photothermal cancer therapy in vitro and in vivo. Chem Commun 46:3167–3169. doi: 10.1039/b919172k Google Scholar
  126. 126.
    Cho H-S, Dong Z, Pauletti GM, Zhang J, Xu H, Gu H, Wang L, Ewing RC, Huth C, Wang F (2010) Fluorescent, superparamagnetic nanospheres for drug storage, targeting, and imaging: a multifunctional nanocarrier system for cancer diagnosis and treatment. ACS Nano 4:5398–5404. doi: 10.1021/nn101000e PubMedGoogle Scholar
  127. 127.
    Guo R, Zhang L, Qian H, Li R, Jiang X, Liu B (2010) Multifunctional nanocarriers for cell imaging, drug delivery, and near-IR photothermal therapy. Langmuir 26:5428–5434. doi: 10.1021/la903893n PubMedGoogle Scholar
  128. 128.
    Tuszynski MH, Thal L, Pay M, Salmon DP, Bakay R, Patel P, Blesch A, Vahlsing HL, Ho G, Tong G (2005) A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med 11:551–555. doi: 10.1038/nm1239 PubMedGoogle Scholar
  129. 129.
    Kaplitt MG, Feigin A, Tang C, Fitzsimons HL, Mattis P, Lawlor PA, Bland RJ, Young D, Strybing K, Eidelberg D (2007) Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet 369:2097–2105. doi: 10.1016/S0140-6736(07)60982-9 PubMedGoogle Scholar
  130. 130.
    Morille M, Passirani C, Vonarbourg A, Clavreul A, Benoit J-P (2008) Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomaterials 29:3477–3496. doi: 10.1016/j.biomaterials.2008.04.036 PubMedGoogle Scholar
  131. 131.
    Reischl D, Zimmer A (2009) Drug delivery of siRNA therapeutics: potentials and limits of nanosystems. Nanomed Nanotechnol Biol Med 5:8–20. doi: 10.1016/j.nano.2008.06.001 Google Scholar
  132. 132.
    Roy I, Stachowiak MK, Bergey EJ (2008) Nonviral gene transfection nanoparticles: function and applications in the brain. Nanomed Nanotechnol Biol Med 4:89–97. doi: 10.1016/j.nano.2008.01.002 Google Scholar
  133. 133.
    Jain S, Kumar S, Agrawal AK, Thanki K, Banerjee UC (2013) Enhanced transfection efficiency and reduced cytotoxicity of novel lipid–polymer hybrid nanoplexes. Mol Pharm 10:2416–2425. doi: 10.1021/mp400036w PubMedGoogle Scholar
  134. 134.
    Glover DJ, Lipps HJ, Jans DA (2005) Towards safe, non-viral therapeutic gene expression in humans. Nat Rev Genet 6:299–310. doi: 10.1038/nrg1577 PubMedGoogle Scholar
  135. 135.
    Schmidt-Wolf GD, Schmidt-Wolf IG (2003) Non-viral and hybrid vectors in human gene therapy: an update. Trends Mol Med 9:67–72. doi: 10.1016/S1471-4914(03)00005-4 PubMedGoogle Scholar
  136. 136.
    Pack DW, Hoffman AS, Pun S, Stayton PS (2005) Design and development of polymers for gene delivery. Nat Rev Drug Discov 4:581–593. doi: 10.1038/nrd1775 PubMedGoogle Scholar
  137. 137.
    Lin E-H, Chang H-Y, Yeh S-D, Yang K-Y, Hu H-S, Wu C-W (2013) Polyethyleneimine and DNA nanoparticles-based gene therapy for acute lung injury. Nanomed Nanotechnol Biol Med 9:1293–1303. doi: 10.1016/j.nano.2013.05.004 Google Scholar
  138. 138.
    Vijayanathan V, Thomas T, Thomas TJ (2002) DNA nanoparticles and development of DNA delivery vehicles for gene therapy. Biochemistry 41:14085–14094. doi: 10.1021/bi0203987 PubMedGoogle Scholar
  139. 139.
    Kim HO, Kim E, An Y, Choi J, Jang E, Choi EB, Kukreja A, Kim MH, Kang B, Kim DJ (2013) A biodegradable polymersome containing Bcl‐xL siRNA and doxorubicin as a dual delivery vehicle for a synergistic anticancer effect. Macromol Biosci 13:745–754. doi: 10.1002/mabi.201200448 PubMedGoogle Scholar
  140. 140.
    Kim Y, Tewari M, Pajerowski JD, Cai S, Sen S, Williams J, Sirsi S, Lutz G, Discher DE (2009) Polymersome delivery of siRNA and antisense oligonucleotides. J Control Release 134:132–140. doi: 10.1016/j.jconrel.2008.10.020 PubMedCentralPubMedGoogle Scholar
  141. 141.
    Kommareddy S, Amiji M (2005) Preparation and evaluation of thiol-modified gelatin nanoparticles for intracellular DNA delivery in response to glutathione. Bioconjug Chem 16:1423–1432. doi: 10.1021/bc050146t PubMedGoogle Scholar
  142. 142.
    Kommareddy S, Amiji M (2007) Antiangiogenic gene therapy with systemically administered sFlt-1 plasmid DNA in engineered gelatin-based nanovectors. Cancer Gene Ther 14:488–498. doi: 10.1038/sj.cgt.7701041 PubMedGoogle Scholar
  143. 143.
    Pangburn TO, Georgiou K, Bates FS, Kokkoli E (2012) Targeted polymersome delivery of siRNA induces cell death of breast cancer cells dependent upon Orai3 protein expression. Langmuir 28:12816–12830. doi: 10.1021/la300874z PubMedGoogle Scholar
  144. 144.
    Bhavsar MD, Amiji MM (2007) Gastrointestinal distribution and in vivo gene transfection studies with nanoparticles-in-microsphere oral system (NiMOS). J Control Release 119:339–348. doi: 10.1016/j.jconrel.2007.03.006 PubMedGoogle Scholar
  145. 145.
    Zhang J, Sun H, Ma PX (2010) Host− guest interaction mediated polymeric assemblies: multifunctional nanoparticles for drug and gene delivery. ACS Nano 4:1049–1059. doi: 10.1021/nn901213a PubMedCentralPubMedGoogle Scholar
  146. 146.
    Davis ME (2009) The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol Pharm 6:659–668. doi: 10.1021/mp900015y PubMedGoogle Scholar
  147. 147.
    Bellocq NC, Pun SH, Jensen GS, Davis ME (2003) Transferrin-containing, cyclodextrin polymer-based particles for tumor-targeted gene delivery. Bioconjug Chem 14:1122–1132. doi: 10.1021/bc034125f PubMedGoogle Scholar
  148. 148.
    Khalil I, Kogure K, Futaki S, Hama S, Akita H, Ueno M, Kishida H, Kudoh M, Mishina Y, Kataoka K (2007) Octaarginine-modified multifunctional envelope-type nanoparticles for gene delivery. Gene Ther 14:682–689. doi: 10.1038/sj.gt.3302910 PubMedCentralPubMedGoogle Scholar
  149. 149.
    Kogure K, Akita H, Harashima H (2007) Multifunctional envelope-type nano device for non-viral gene delivery: concept and application of Programmed Packaging. J Control Release 122:246–251. doi: 10.1016/j.jconrel.2007.06.018 PubMedGoogle Scholar
  150. 150.
    Kogure K, Akita H, Yamada Y, Harashima H (2008) Multifunctional envelope-type nano device (MEND) as a non-viral gene delivery system. Adv Drug Deliv Rev 60:559–571. doi: 10.1016/j.addr.2007.10.007 PubMedGoogle Scholar
  151. 151.
    Hatakeyama H, Akita H, Harashima H (2011) A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: a strategy for overcoming the PEG dilemma. Adv Drug Deliv Rev 63:152–160. doi: 10.1016/j.addr.2010.09.001 PubMedGoogle Scholar
  152. 152.
    Nakamura Y, Kogure K, Futaki S, Harashima H (2007) Octaarginine-modified multifunctional envelope-type nano device for siRNA. J Control Release 119:360–367. doi: 10.1016/j.jconrel.2007.03.010 PubMedGoogle Scholar
  153. 153.
    Hatakeyama H, Ito E, Akita H, Oishi M, Nagasaki Y, Futaki S, Harashima H (2009) A pH-sensitive fusogenic peptide facilitates endosomal escape and greatly enhances the gene silencing of siRNA-containing nanoparticles in vitro and in vivo. J Control Release 139:127–132. doi: 10.1016/j.jconrel.2009.06.008 PubMedGoogle Scholar
  154. 154.
    El-Sayed A, Futaki S, Harashima H (2009) Delivery of macromolecules using arginine-rich cell-penetrating peptides: ways to overcome endosomal entrapment. AAPS J 11:13–22. doi: 10.1208/s12248-008-9071-2 PubMedCentralPubMedGoogle Scholar
  155. 155.
    Khalil IA, Hayashi Y, Mizuno R, Harashima H (2011) Octaarginine-and pH sensitive fusogenic peptide-modified nanoparticles for liver gene delivery. J Control Release 156:374–380. doi: 10.1016/j.jconrel.2011.08.012 PubMedGoogle Scholar
  156. 156.
    Akita H, Kogure K, Moriguchi R, Nakamura Y, Higashi T, Nakamura T, Serada S, Fujimoto M, Naka T, Futaki S (2010) Nanoparticles for ex vivo siRNA delivery to dendritic cells for cancer vaccines: Programmed endosomal escape and dissociation. J Control Release 143:311–317. doi: 10.1016/j.jconrel.2010.01.012 PubMedGoogle Scholar
  157. 157.
    Guo S, Qiao Y, Wang W, He H, Deng L, Xing J, Xu J, Liang X-J, Dong A (2010) Poly (ε-caprolactone)-graft-poly (2-(N, N-dimethylamino) ethyl methacrylate) nanoparticles: pH dependent thermo-sensitive multifunctional carriers for gene and drug delivery. J Mater Chem 20:6935–6941. doi: 10.1039/C0JM00506A Google Scholar
  158. 158.
    Nishikawa M, Yamauchi M, Morimoto K, Ishida E, Takakura Y, Hashida M (2000) Hepatocyte-targeted in vivo gene expression by intravenous injection of plasmid DNA complexed with synthetic multi-functional gene delivery system. Gene Ther 7:548–555. doi: 10.1038/sj.gt.3301140 PubMedGoogle Scholar
  159. 159.
    Schiffelers RM, Ansari A, Xu J, Zhou Q, Tang Q, Storm G, Molema G, Lu PY, Scaria PV, Woodle MC (2004) Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res 32:e149–e149. doi: 10.1093/nar/gnh140 PubMedCentralPubMedGoogle Scholar
  160. 160.
    Suk JS, Suh J, Choy K, Lai SK, Fu J, Hanes J (2006) Gene delivery to differentiated neurotypic cells with RGD and HIV Tat peptide functionalized polymeric nanoparticles. Biomaterials 27:5143–5150. doi: 10.1016/j.biomaterials.2006.05.013 PubMedGoogle Scholar
  161. 161.
    Magadala P, Amiji M (2008) Epidermal growth factor receptor-targeted gelatin-based engineered nanocarriers for DNA delivery and transfection in human pancreatic cancer cells. AAPS J 10:565–576. doi: 10.1208/s12248-008-9065-0 PubMedCentralPubMedGoogle Scholar
  162. 162.
    Saeed AO, Magnusson JP, Moradi E, Soliman M, Wang W, Stolnik S, Thurecht KJ, Howdle SM, Alexander C (2011) Modular construction of multifunctional bioresponsive cell-targeted nanoparticles for gene delivery. Bioconjug Chem 22:156–168. doi: 10.1021/bc100149g PubMedGoogle Scholar
  163. 163.
    Patil YB, Swaminathan SK, Sadhukha T, Ma L, Panyam J (2010) The use of nanoparticle-mediated targeted gene silencing and drug delivery to overcome tumor drug resistance. Biomaterials 31:358–365. doi: 10.1016/j.biomaterials.2009.09.048 PubMedCentralPubMedGoogle Scholar
  164. 164.
    Chen G, Chen W, Wu Z, Yuan R, Li H, Gao J, Shuai X (2009) MRI-visible polymeric vector bearing CD3 single chain antibody for gene delivery to T cells for immunosuppression. Biomaterials 30:1962–1970. doi: 10.1016/j.biomaterials.2008.12.043 PubMedGoogle Scholar
  165. 165.
    Juillerat-Jeanneret L (2008) The targeted delivery of cancer drugs across the blood–brain barrier: chemical modifications of drugs or drug-nanoparticles? Drug Discov Today 13:1099–1106. doi: 10.1016/j.drudis.2008.09.005 PubMedGoogle Scholar
  166. 166.
    Wong HL, Wu XY, Bendayan R (2012) Nanotechnological advances for the delivery of CNS therapeutics. Adv Drug Deliv Rev 64:686–700. doi: 10.1016/j.addr.2011.10.007 PubMedGoogle Scholar
  167. 167.
    Kreuter J, Shamenkov D, Petrov V, Ramge P, Cychutek K, Koch-Brandt C, Alyautdin R (2002) Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J Drug Target 10:317–325. doi: 10.1080/10611860290031877 PubMedGoogle Scholar
  168. 168.
    Kreuter J, Alyautdin RN, Kharkevich DA, Ivanov AA (1995) Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles). Brain Res 674:171–174. doi: 10.1016/0006-8993(95)00023-J PubMedGoogle Scholar
  169. 169.
    Gulyaev AE, Gelperina SE, Skidan IN, Antropov AS, Kivman GY, Kreuter J (1999) Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharm Res 16:1564–1569. doi: 10.1023/A:1018983904537 PubMedGoogle Scholar
  170. 170.
    Kreuter J (2012) Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev 64:213–222. doi: 10.1016/S0169-409X(00)00122-8 Google Scholar
  171. 171.
    Alyautdin R, Tezikov E, Ramge P, Kharkevich D, Begley D, Kreuter J (1998) Significant entry of tubocurarine into the brain of rats by adsorption to polysorbate 80-coated polybutylcyanoacrylate nanoparticles: an in situ brain perfusion study. J Microencapsul 15:67–74. doi: 10.3109/02652049809006836 PubMedGoogle Scholar
  172. 172.
    Alyautdin RN, Petrov VE, Langer K, Berthold A, Kharkevich DA, Kreuter J (1997) Delivery of loperamide across the blood-brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharm Res 14:325–328. doi: 10.1023/A:1012098005098 PubMedGoogle Scholar
  173. 173.
    Gelperina S, Smirnova Z, Khalanskiy A, Skidan I, Bobruskin A, Kreuter J. (2000) Chemotherapy of brain tumours using doxorubicin bound to polysorbate 80-coated nanoparticles. In: Proceedings of the 3rd World Meeting APV/APGI, Berlin, 2000, pp. 441–442Google Scholar
  174. 174.
    Kreuter J, Petrov V, Kharkevich D, Alyautdin R (1997) Influence of the type of surfactant on the analgesic effects induced by the peptide dalargin after its delivery across the blood–brain barrier using surfactant-coated nanoparticles. J Control Release 49:81–87. doi: 10.1016/S0168-3659(97)00061-8 Google Scholar
  175. 175.
    Schröder U, Sabel BA (1996) Nanoparticles, a drug carrier system to pass the blood-brain barrier, permit central analgesic effects of iv dalargin injections. Brain Res 710:121–124. doi: 10.1016/0006-8993(95)01375-X PubMedGoogle Scholar
  176. 176.
    Schroeder U, Sommerfeld P, Sabel BA (1998) Efficacy of oral dalargin-loaded nanoparticle delivery across the blood–brain barrier. Peptides 19:777–780. doi: 10.1016/S0196-9781(97)00474-9 PubMedGoogle Scholar
  177. 177.
    Schroeder U, Sommerfeld P, Ulrich S, Sabel BA (1998) Nanoparticle technology for delivery of drugs across the blood–brain barrier. J Pharm Sci 87:1305–1307. doi: 10.1021/js980084y PubMedGoogle Scholar
  178. 178.
    Chen Y, Liu L (2012) Modern methods for delivery of drugs across the blood–brain barrier. Adv Drug Deliv Rev 64:640–665. doi: 10.1016/j.addr.2011.11.010 PubMedGoogle Scholar
  179. 179.
    Hans M, Lowman A (2002) Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci 6:319–327. doi: 10.1016/S1359-0286(02)00117-1 Google Scholar
  180. 180.
    Wilson B, Samanta MK, Santhi K, Kumar KPS, Paramakrishnan N, Suresh B (2008) Poly (n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer’s disease. Brain Res 1200:159–168. doi: 10.1016/j.brainres.2008.01.039 PubMedGoogle Scholar
  181. 181.
    Liu G, Garrett MR, Men P, Zhu X, Perry G, Smith MA (2005) Nanoparticle and other metal chelation therapeutics in Alzheimer disease. BBA-Mol Basis Dis 1741:246–252. doi: 10.1016/j.bbadis.2005.06.006 Google Scholar
  182. 182.
    Christen Y (2000) Oxidative stress and Alzheimer disease. Am J Clin Nutr 71:621–629Google Scholar
  183. 183.
    Hazel JR, Eugene Williams E (1990) The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Prog Lipid Res 29:167–227PubMedGoogle Scholar
  184. 184.
    Henderson BW, Dougherty TJ (1992) How does photodynamic therapy work? Photochem Photobiol 55:145–157. doi: 10.1111/j.1751-1097.1992.tb04222.x PubMedGoogle Scholar
  185. 185.
    Tang W, Xu H, Kopelman R, Philbert MA (2005) Photodynamic characterization and in vitro application of methylene blue‐containing nanoparticle platforms. Photochem Photobiol 81:242–249. doi: 10.1111/j.1751-1097.2005.tb00181.x PubMedGoogle Scholar
  186. 186.
    Porkka K, Laakkonen P, Hoffman JA, Bernasconi M, Ruoslahti E (2002) A fragment of the HMGN2 protein homes to the nuclei of tumor cells and tumor endothelial cells in vivo. Proc Natl Acad Sci U S A 99:7444–7449. doi: 10.1073/pnas.062189599 PubMedCentralPubMedGoogle Scholar
  187. 187.
    Abels C (2004) Targeting of the vascular system of solid tumours by photodynamic therapy (PDT). Photochem Photobiol Sci 3:765–771. doi: 10.1039/b314241h PubMedGoogle Scholar
  188. 188.
    Tian X-H, Lin X-N, Wei F, Feng W, Huang Z-C, Wang P, Ren L, Diao Y (2011) Enhanced brain targeting of temozolomide in polysorbate-80 coated polybutylcyanoacrylate nanoparticles. Int J Nanomedicine 6:445–452. doi: 10.2147/IJN.S16570 PubMedCentralPubMedGoogle Scholar
  189. 189.
    Kuo Y-C, Chen H-H (2006) Effect of nanoparticulate polybutylcyanoacrylate and methylmethacrylate–sulfopropylmethacrylate on the permeability of zidovudine and lamivudine across the in vitro blood–brain barrier. Int J Pharm 327:160–169. doi: 10.1016/j.ijpharm.2006.07.044 PubMedGoogle Scholar
  190. 190.
    Roney C, Kulkarni P, Arora V, Antich P, Bonte F, Wu A, Mallikarjuana NN, Manohar S, Liang H-F, Kulkarni AR, Sung H-W, Sairam M, Aminabhavi TM (2005) Targeted nanoparticles for drug delivery through the blood–brain barrier for Alzheimer’s disease. J Control Release 108:193–214. doi: 10.1016/j.jconrel.2005.07.024 PubMedGoogle Scholar
  191. 191.
    Calvo P, Gouritin B, Chacun H, Desmaële D, D’Angelo J, Noel J-P, Georgin D, Fattal E, Andreux JP, Couvreur P (2001) Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery. Pharm Res 18:1157–1166. doi: 10.1023/A:1010931127745 PubMedGoogle Scholar
  192. 192.
    Gao X, Wu B, Zhang Q, Chen J, Zhu J, Zhang W, Rong Z, Chen H, Jiang X (2007) Brain delivery of vasoactive intestinal peptide enhanced with the nanoparticles conjugated with wheat germ agglutinin following intranasal administration. J Control Release 121:156–167. doi: 10.1016/j.jconrel.2007.05.026 PubMedGoogle Scholar
  193. 193.
    Ulbrich K, Hekmatara T, Herbert E, Kreuter J (2009) Transferrin-and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood–brain barrier (BBB). Eur J Pharm Biopharm 71:251–256. doi: 10.1016/j.ejpb.2008.08.021 PubMedGoogle Scholar
  194. 194.
    Blumberg BS, London WT (1981) Hepatitis B virus and the prevention of primary hepatocellular carcinoma. N Engl J Med 304:782–784. doi: 10.1056/NEJM198103263041312 PubMedGoogle Scholar
  195. 195.
    Mimi CY, Mack T, Hanisch R, Peters RL, Henderson BE, Pike MC (1983) Hepatitis, alcohol consumption, cigarette smoking, and hepatocellular carcinoma in Los Angeles. Cancer Res 43:6077–6079Google Scholar
  196. 196.
    Ohnishi K, Iida S, Iwama S, Goto N, Nomura F, Takashi M, Mishima A, Kono K, Kimura K, Musha H (1982) The effect of chronic habitual alcohol intake on the development of liver cirrhosis and hepatocellular carcinoma: relation to hepatitis B surface antigen carriage. Cancer 49:672–677. doi:10.1002/1097-0142(19820215)49:4<672::AID-CNCR2820490415>3.0.CO;2-#PubMedGoogle Scholar
  197. 197.
    Ashwell G, Harford J (1982) Carbohydrate-specific receptors of the liver. Annu Rev Biochem 51:531–554. doi: 10.1146/annurev.bi.51.070182.002531 PubMedGoogle Scholar
  198. 198.
    Wu J, Nantz MH, Zern MA (2002) Targeting hepatocytes for drug and gene delivery: emerging novel approaches and applications. Front Biosci 7:d717PubMedGoogle Scholar
  199. 199.
    Ciechanover A, Schwartz AL, Lodish HF (1983) Sorting and recycling of cell surface receptors and endocytosed ligands: the asialoglycoprotein and transferrin receptors. J Cell Biochem 23:107–130. doi: 10.1002/jcb.240230111 PubMedGoogle Scholar
  200. 200.
    Liang H-F, Chen C-T, Chen S-C, Kulkarni AR, Chiu Y-L, Chen M-C, Sung H-W (2006) Paclitaxel-loaded poly (γ-glutamic acid)-poly (lactide) nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Biomaterials 27:2051–2059. doi: 10.1016/j.biomaterials.2005.10.027 PubMedGoogle Scholar
  201. 201.
    Cho C, Cho K, Park I, Kim S, Sasagawa T, Uchiyama M, Akaike T (2001) Receptor-mediated delivery of all trans-retinoic acid to hepatocyte using poly (L-lactic acid) nanoparticles coated with galactose-carrying polystyrene. J Control Release 77:7–15. doi: 10.1016/S0168-3659(01)00390-X PubMedGoogle Scholar
  202. 202.
    Jiang H-L, Kwon J-T, Kim E-M, Kim Y-K, Arote R, Jere D, Jeong H-J, Jang M-K, Nah J-W, Xu C-X (2008) Galactosylated poly (ethylene glycol)-chitosan-graft-polyethylenimine as a gene carrier for hepatocyte-targeting. J Control Release 131:150–157. doi: 10.1016/j.jconrel.2008.07.029 PubMedGoogle Scholar
  203. 203.
    Wu D-Q, Lu B, Chang C, Chen C-S, Wang T, Zhang Y-Y, Cheng S-X, Jiang X-J, Zhang X-Z, Zhuo R-X (2009) Galactosylated fluorescent labeled micelles as a liver targeting drug carrier. Biomaterials 30:1363–1371. doi: 10.1016/j.biomaterials.2008.11.027 PubMedGoogle Scholar
  204. 204.
    Sawamura T, Nakada H, Hazama H, Shiozaki Y, Sameshima Y, Tashiro Y (1984) Hyperasialoglycoproteinemia in patients with chronic liver diseases and/or liver cell carcinoma. Asialoglycoprotein receptor in cirrhosis and liver cell carcinoma. Gastroenterology 87:1217–1221PubMedGoogle Scholar
  205. 205.
    Tian Q, Zhang C-N, Wang X-H, Wang W, Huang W, Cha R-T, Wang C-H, Yuan Z, Liu M, Wan H-Y (2010) Glycyrrhetinic acid-modified chitosan/poly (ethylene glycol) nanoparticles for liver-targeted delivery. Biomaterials 31:4748–4756. doi: 10.1016/j.biomaterials.2010.02.042 PubMedGoogle Scholar
  206. 206.
    Asl MN, Hosseinzadeh H (2008) Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. Phytother Res 22:709–724PubMedGoogle Scholar
  207. 207.
    Ishida S, Sakiya Y, Ichikawa T, Taira Z (1993) Uptake of glycyrrhizin by isolated rat hepatocytes. Biol Pharm Bull 16:293–297PubMedGoogle Scholar
  208. 208.
    Ishida S, Sakiya Y, Taira Z (1994) Disposition of glycyrrhizin in the perfused liver of rats. Biol Pharm Bull 17:960–969PubMedGoogle Scholar
  209. 209.
    Negishi M, Irie A, Nagata N, Ichikawa A (1991) Specific binding of glycyrrhetinic acid to the rat liver membrane. Biochim Biophys Acta 1066:77–82. doi: 10.1016/0005-2736(91)90253-5 PubMedGoogle Scholar
  210. 210.
    Lin A, Liu Y, Huang Y, Sun J, Wu Z, Zhang X, Ping Q (2008) Glycyrrhizin surface-modified chitosan nanoparticles for hepatocyte-targeted delivery. Int J Pharm 359:247–253. doi: 10.1016/j.ijpharm.2008.03.039 PubMedGoogle Scholar
  211. 211.
    Agarwal A, Saraf S, Asthana A, Gupta U, Gajbhiye V, Jain NK (2008) Ligand based dendritic systems for tumor targeting. Int J Pharm 350:3–13. doi: 10.1016/j.ijpharm.2007.09.024 PubMedGoogle Scholar
  212. 212.
    Zhang L, Gong F, Zhang F, Ma J, Zhang P, Shen J (2013) Targeted therapy for human hepatic carcinoma cells using folate-functionalized polymeric micelles loaded with superparamagnetic iron oxide and sorafenib in vitro. Int J Nanomedicine 8:1517–1524. doi: 10.2147/IJN.S43263 PubMedCentralPubMedGoogle Scholar
  213. 213.
    Kim TH, Park IK, Nah JW, Choi YJ, Cho CS (2004) Galactosylated chitosan/DNA nanoparticles prepared using water-soluble chitosan as a gene carrier. Biomaterials 25:3783–3792. doi: 10.1016/j.biomaterials.2003.10.063 PubMedGoogle Scholar
  214. 214.
    Mansouri S, Cuie Y, Winnik F, Shi Q, Lavigne P, Benderdour M, Beaumont E, Fernandes JC (2006) Characterization of folate-chitosan-DNA nanoparticles for gene therapy. Biomaterials 27:2060–2065. doi: 10.1016/j.biomaterials.2005.09.020 PubMedGoogle Scholar
  215. 215.
    Liu Y, Chen Z, Liu C, Yu D, Lu Z, Zhang N (2011) Gadolinium-loaded polymeric nanoparticles modified with Anti-VEGF as multifunctional MRI contrast agents for the diagnosis of liver cancer. Biomaterials 32:5167–5176. doi: 10.1016/j.biomaterials.2011.03.077 PubMedGoogle Scholar
  216. 216.
    Hong G, Yuan R, Liang B, Shen J, Yang X, Shuai X (2008) Folate-functionalized polymeric micelle as hepatic carcinoma-targeted, MRI-ultrasensitive delivery system of antitumor drugs. Biomed Microdevices 10:693–700. doi: 10.1007/s10544-008-9180-9 PubMedGoogle Scholar

Copyright information

© Controlled Release Society 2015

Authors and Affiliations

  • Ashish Kumar Agrawal
    • 1
  • Dileep Urimi
    • 1
  • Sanyog Jain
    • 1
    Email author
  1. 1.Centre for Pharmaceutical Nanotechnology, Department of PharmaceuticsNational Institute of Pharmaceutical Education and Research (NIPER)MohaliIndia

Personalised recommendations