Semantic-Based Image Analysis with the Goal of Assisting Artistic Creation

  • Pilar Rosado
  • Ferran Reverter
  • Eva Figueras
  • Miquel Planas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8671)


We have approached the difficulties of automatic cataloguing of images on which the conception and design of sculptor M. Planas artistic production are based. In order to build up a visual vocabulary for basing image description on, we followed a procedure similar to the method Bag-of-Words (BOW). We have implemented a probabilistic latent semantic analysis (PLSA) that detects underlying topics in images. Whole image collection was clustered into different types that describe aesthetic preferences of the artist. The outcomes are promising, the described cataloguing method may provide new viewpoints for the artist in future works.


Artificial vision automated image cataloguing Bag-of-Visual terms probabilistic latent semantic analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stork, D.G.: Computer image analysis of paintings and drawings: An introduction to the literature. In: Proc. of the Image Processing for Artist Identification Workshop. Van Gogh Museum (2008)Google Scholar
  2. 2.
    Planas, M.A.: Miquel Planas (2014),
  3. 3.
    Reverter, F., Rosado, P., Figueras, E., Planas, M.A.: Artistic ideation based on computer vision methods. Journal of Theoretical and Applied Computer Science 6(2), 72–78 (2012)Google Scholar
  4. 4.
    Willamowski, J., Arregui, D., Csurka, G., Dance, C., Fan, L.: Categorizing nine visual classes using local appearance descriptors. In: Proceedings of LAVS Workshop, ICPR 2004, Cambridge (2004)Google Scholar
  5. 5.
    Lazebnik, S., Schmid, C., Ponce, J.: Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2169–2178 (2006), Scholar
  6. 6.
    Fei-Fei, L., Perona, P.: A Bayesian hierarchical model for learning natural scene categories. In: Proc. CVPR (2005)Google Scholar
  7. 7.
    Grauman, K., Darrel, T.: The pyramid match kernel: Discriminative classification with sets of image features. In: Proceedings of IEEE International Conference on Computer Vision (ICCV), Beijing (2005)Google Scholar
  8. 8.
    Hofmann, T.: Unsupervised learning by probabilistic latent semantic analysis. Machine Learning 42, 177–196 (2001)CrossRefzbMATHGoogle Scholar
  9. 9.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Royal Statist. Soc. B 39, 1–38 (1977)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Bosch, A., Zisserman, A., Muñoz, X.: Scene classification via pLSA. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 517–530. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Quelhas, P., Monay, F., Odobez, J.M., Gatica-Perez, D., Tuytelaars, T., Van Gool, L.: Modeling scenes with local descriptors and latent aspects. In: Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV 2005), vol. 1, pp. 883–890 (2005), doi:10.1109/ICCV. 2005. 152Google Scholar
  12. 12.
    Lowe, D.G.: Distinctive Image Features from Scale Invariant Keypoints. Int. Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  13. 13.
    Vedaldi, A., Fulkerson, B.: VLFeat - An open and portable library of computer vision algorithms (2008), (retrieved)
  14. 14.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. John Wiley & Sons, New Jersey (2006)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Pilar Rosado
    • 1
  • Ferran Reverter
    • 2
  • Eva Figueras
    • 1
  • Miquel Planas
    • 1
  1. 1.Fine Arts FacultyUniversity of BarcelonaSpain
  2. 2.Statistics DepartmentUniversity of BarcelonaSpain

Personalised recommendations