Head Pose Estimation Relying on Appearance-Based Nose Region Analysis

  • Krzysztof Pawelczyk
  • Michał Kawulok
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8671)


In this paper we explore the possibilities of recognizing head orientation based on the appearance of the nose. We demonstrate that the features extracted from that region possess high discriminating power with regards to the head orientation. Extensive experimental validation study, performed using the benchmark data, confirmed high effectiveness of the proposed approach compared with the baseline techniques that rely on the analysis of the entire facial region.


Local Binary Pattern Face Detection Head Orientation Facial Landmark Grid Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balasubramanian, V.N., Ye, J., Panchanathan, S.: Biased manifold embedding: A framework for person-independent head pose estimation. In: Proc. IEEE CVPR, pp. 1–7 (2007)Google Scholar
  2. 2.
    Chen, L., Zhang, L., Hu, Y., Li, M., Zhang, H.: Head pose estimation using Fisher Manifold learning. In: Proc. IEEE AMFG, pp. 203–207 (2003)Google Scholar
  3. 3.
    Dornaika, F., Davoine, F.: Head and facial animation tracking using appearance-adaptive models and particle filters. In: Proc. IEEE CVPR, pp. 153–153 (2004)Google Scholar
  4. 4.
    Fanelli, G., Gall, J., Van Gool, L.: Real time head pose estimation with random regression forests. In: Proc. IEEE CVPR, pp. 617–624 (2011)Google Scholar
  5. 5.
    Gourier, N., Hall, D., Crowley, J.L.: Estimating face orientation from robust detection of salient facial structures. In: Proc. Pointing 2004, ICPR, Int. Workshop on Visual Observation of Deictic Gestures, pp. 1–9 (2004)Google Scholar
  6. 6.
    Gourier, N., Maisonnasse, J., Hall, D., Crowley, J.L.: Head pose estimation on low resolution images. In: Stiefelhagen, R., Garofolo, J.S. (eds.) CLEAR 2006. LNCS, vol. 4122, pp. 270–280. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Hachaj, T., Ogiela, M.R., Piekarczyk, M.: Real-time recognition of selected karate techniques using GDL approach. In: Choras, R.S. (ed.) Image Processing and Communications Challenges 5. Advances in Intelligent Systems and Computing, vol. 233, pp. 97–104. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  8. 8.
    Hansen, D.W., Ji, Q.: In the eye of the beholder: A survey of models for eyes and gaze. IEEE Trans. Pattern Anal. Mach. Intell. 32, 478–500 (2010)CrossRefGoogle Scholar
  9. 9.
    Jones, M., Viola, P.: Fast multi-view face detection. Mitsubishi Electric Research Lab TR-20003-96 3 14 (2003)Google Scholar
  10. 10.
    Kawulok, M., Szymanek, J.: Precise multi-level face detector for advanced analysis of facial images. Image Process., IET 6(2), 95–103 (2012)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Kawulok, M., Nalepa, J.: Support vector machines training data selection using a genetic algorithm. In: Gimel’farb, G., Hancock, E., Imiya, A., Kuijper, A., Kudo, M., Omachi, S., Windeatt, T., Yamada, K. (eds.) SSPR&SPR 2012. LNCS, vol. 7626, pp. 557–565. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Krüger, V., Sommer, G.: Gabor wavelet networks for efficient head pose estimation. Image and Vision Comput 20(9), 665–672 (2002)CrossRefGoogle Scholar
  13. 13.
    Ma, B., Chai, X., Wang, T.: A novel feature descriptor based on biologically inspired feature for head pose estimation. Neurocomputing 115, 1–10 (2013)CrossRefGoogle Scholar
  14. 14.
    McKenna, S.J., Gong, S.: Real-time face pose estimation. Real-Time Imaging 4(5), 333–347 (1998)CrossRefGoogle Scholar
  15. 15.
    Murphy-Chutorian, E., Trivedi, M.M.: Head pose estimation in computer vision: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 31(4), 607–626 (2009)CrossRefGoogle Scholar
  16. 16.
    Nalepa, J., Kawulok, M.: Adaptive genetic algorithm to select training data for support vector machines. In: EvoApplications 2014. EvoIASP. LNCS, Springer (in press 2014)Google Scholar
  17. 17.
    Niyogi, S., Freeman, W.T.: Example-based head tracking. In: Proc. IEEE FG, pp. 374–378 (1996)Google Scholar
  18. 18.
    Orozco, J., Gong, S., Xiang, T.: Head pose classification in crowded scenes. In: Proc. BMVC., vol. 1, p. 120 (2009)Google Scholar
  19. 19.
    Sherrah, J., Gong, S., Ong, E.J.: Understanding pose discrimination in similarity space. In: Proc. BMVC, pp. 1–10 (1999)Google Scholar
  20. 20.
    Starosolski, R.: New simple and efficient color space transformations for lossless image compression. J. of Vis. Commun. and Image Represent. 25(5), 1056–1063 (2014)CrossRefGoogle Scholar
  21. 21.
    Stiefelhagen, R.: Estimating head pose with neural networks. In: Proc. Pointing 2004 ICPR Workshop (2004)Google Scholar
  22. 22.
    Storer, M., Urschler, M., Bischof, H.: 3D-MAM: 3D morphable appearance model for efficient fine head pose estimation from still images. In: Proc. IEEE ICCV Workshops, pp. 192–199 (2009)Google Scholar
  23. 23.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: CVPR, vol. (1), pp. 511–518 (2001)Google Scholar
  24. 24.
    Voit, M., Nickel, K., Stiefelhagen, R.: Neural network-based head pose estimation and multi-view fusion. In: Stiefelhagen, R., Garofolo, J.S. (eds.) CLEAR 2006. LNCS, vol. 4122, pp. 291–298. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Zhang, Z., Hu, Y., Liu, M., Huang, T.: Head pose estimation in seminar room using multi view face detectors. In: Stiefelhagen, R., Garofolo, J.S. (eds.) CLEAR 2006. LNCS, vol. 4122, pp. 299–304. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  26. 26.
    Zhu, X., Ramanan, D.: Face detection, pose estimation, and landmark localization in the wild. In: Proc. IEEE CVPR, pp. 2879–2886 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Krzysztof Pawelczyk
    • 1
  • Michał Kawulok
    • 2
    • 1
  1. 1.Future ProcessingGliwicePoland
  2. 2.Institute of InformaticsSilesian University of TechnologyGliwicePoland

Personalised recommendations