Advertisement

Similarity Estimation of Textile Materials Based on Image Quality Assessment Methods

  • Krzysztof Okarma
  • Dariusz Frejlichowski
  • Piotr Czapiewski
  • Paweł Forczmański
  • Radosław Hofman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8671)

Abstract

In this paper some experimental results obtained by the application of various image quality assessment methods for the estimation of similarity of textile materials are presented. Such approach is considered as a part of an artificial intelligence based system developed for the recognition of clothing styles based on multi-dimensional analysis of descriptors and features.

For the verification of the usefulness of image quality metrics for this purpose, mainly those based on the comparison of the local similarity of image fragments have been chosen. Nevertheless, since the most of them are applied only for grayscale images, various methods of color to grayscale conversion have been analyzed. Obtained results are promising and may be successfully applied in combination with some other algorithms used e.g. in CBIR systems. Since the analyzed metrics do not use any information related to shape of objects, further combination with shape and color descriptors may be used.

Keywords

textile recognition image quality assessment image analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aja-Fernandez, S., Estepar, R.S.J., Alberola-Lopez, C., Westiniu, C.F.: Image quality assessment based on local variance. In: Proc. 28th IEEE Int. Conf. Engineering in Medicine and Biology Society (EMBS), pp. 4815–4818 (2006)Google Scholar
  2. 2.
    Chen, G.H., Yang, C.L., Xie, S.L.: Gradient-based Structural Similarity for image quality assessment. In: Proc. IEEE Int. Conf. Image Processing (ICIP), pp. 2929–2932 (2006)Google Scholar
  3. 3.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conf. Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 886–893 (2005)Google Scholar
  4. 4.
    Gooch, A.A., Olsen, S.C., Tumblin, J., Gooch, B.B.: Color2gray: salience-preserving color removal. ACM Transactions on Graphics 24(3), 634–639 (2005)CrossRefGoogle Scholar
  5. 5.
    Li, C., Bovik, A.: Three-component weighted structural similarity index. In: Proceedings of SPIE - Image Quality and System Performance VI, San Jose, California, vol. 72420, p. 72420Q (2009)Google Scholar
  6. 6.
    Li, C., Bovik, A.: Content-partitioned structural similarity index for image quality assessment. Signal Processing: Image Communication 25(7), 517–526 (2010)Google Scholar
  7. 7.
    Loke, K.S., Cheong, M.: Efficient textile recognition via decomposition of co-occurrence matrices. In: Proc. IEEE Int. Conf. Signal and Image Processing Applications (ICSIPA), pp. 257–261 (2009)Google Scholar
  8. 8.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classfication with local binary patterns. IEEE Trans. Pattern Anal. Machine Intell. 24(7), 971–987 (2002)CrossRefGoogle Scholar
  9. 9.
    Okarma, K., Forczmański, P.: 2DLDA-based texture recognition in the aspect of objective image quality assessment. Annales UMCS - Informatica 8(1), 99–110 (2008)Google Scholar
  10. 10.
    Palm, C.: Color texture classification by integrative co-occurrence matrices. Pattern Recognition 37(5), 965–976 (2004)CrossRefGoogle Scholar
  11. 11.
    Sampat, M., Wang, Z., Gupta, S., Bovik, A., Markey, M.: Complex wavelet structural similarity: A new image similarity index. IEEE Trans. Image Processing 18(11), 2385–2401 (2009)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Unser, M.: Texture classification and segmentation using wavelet frames. IEEE Trans. Image Processing 4(11), 1549–1560 (1995)CrossRefGoogle Scholar
  13. 13.
    Žujović, J.: Perceptual Texture Similarity Metrics. PhD dissertation, Northwestern University, Evanston, Illinois (2011)Google Scholar
  14. 14.
    Žujović, J., Pappas, T.N., Neuhoff, D.L.: Structural similarity metrics for texture analysis and retrieval. In: Proc. 16 th IEEE Int. Conf. Image Processing ICIP, pp. 2225–2228 (2009)Google Scholar
  15. 15.
    Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: From error measurement to Structural Similarity. IEEE Trans. Image Processing 13(4), 600–612 (2004)CrossRefGoogle Scholar
  16. 16.
    Wang, Z., Li, Q.: Information content weighting for perceptual image quality assessment. IEEE Trans. Image Processing 20(5), 1185–1198 (2011)CrossRefGoogle Scholar
  17. 17.
    Wang, Z., Simoncelli, E., Bovik, A.: Multi-Scale Structural Similarity for image quality assessment. In: Proc. 37th IEEE Asilomar Conf. Signals, Systems and Computers, Pacific Grove, California (2003)Google Scholar
  18. 18.
    Wu, J., Rehg, J.: CENTRIST: A visual descriptor for scene categorization. IEEE Trans. Pattern Anal. Machine Intell. 33(8), 1489–1501 (2011)CrossRefGoogle Scholar
  19. 19.
    Zhang, L., Zhang, L., Mou, X., Zhang, D.: FSIM: A feature similarity index for image quality assessment. IEEE Trans. Image Processing 20(8), 2378–2386 (2011)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Zhang, L., Zhang, L., Mou, X.: RFSIM: A feature based image quality assessment metric using Riesz transforms. In: Proc. 17th IEEE Int. Conf. Image Processing (ICIP), pp. 321–324 (2010)Google Scholar
  21. 21.
    Zhao, X., Reyes, M.G., Pappas, T.N., Neuhoff, D.L.: Structural texture similarity metrics for retrieval applications. In: Proc. 15th IEEE Int. Conf. Image Processing (ICIP), pp. 1196–1199 (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Krzysztof Okarma
    • 1
  • Dariusz Frejlichowski
    • 2
  • Piotr Czapiewski
    • 2
  • Paweł Forczmański
    • 2
  • Radosław Hofman
    • 3
  1. 1.Faculty of Electrical EngineeringWest Pomeranian University of Technology, SzczecinSzczecinPoland
  2. 2.Faculty of Computer Science and Information TechnologyWest Pomeranian University of Technology, SzczecinSzczecinPoland
  3. 3.FireFrog Media sp. z o.o.PoznańPoland

Personalised recommendations