Advertisement

Texture Analysis for Identifying Heterogeneity in Medical Images

  • Jakub Nalepa
  • Janusz Szymanek
  • Michael P. Hayball
  • Stephen J. Brown
  • Balaji Ganeshan
  • Kenneth Miles
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8671)

Abstract

Heterogeneity is a well-recognized feature of malignancy associated with increased tumor aggression and treatment resistance. Texture analysis (TA) of images of various modalities, including, among others, CT, MRI or PET, can be applied to quantify the tumor heterogeneity and to extract useful information from images acquired in routine clinical practice without additional radiation or expense of further procedures. In this paper, we elaborate on the filtration-based approach to TA applied for extracting features from large sets of simulated images reflecting various clinical circumstances. The areas under receiver operating characteristic curves were used to assess the diagnostic performance of the derived biomarkers. We present and discuss their discriminative abilities in identifying heterogeneity and classifying images with simulated lesions of various characteristics and localized density variations.

Keywords

texture analysis image processing image filtration imaging marker 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Krichen, E., Allano, L., Garcia-Salicetti, S., Dorizzi, B.: Specific texture analysis for iris recognition. In: Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 23–30. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Kawulok, M., Kawulok, J., Smolka, B.: Discriminative textural features for image and video colorization. IEICE Trans. on Inf. and Sys. 95-D(7), 1722–1730 (2012)CrossRefGoogle Scholar
  3. 3.
    Kawulok, M., Smolka, B.: Texture-adaptive image colorization framework. EURASIP J. on Adv. in Signal Process. 2011(1), 1–15 (2011)CrossRefGoogle Scholar
  4. 4.
    Kawulok, M., Kawulok, J., Nalepa, J.: Spatial-based skin detection using discriminative skin-presence features. Patt. Recogn. Letters 41, 3–13 (2014)CrossRefGoogle Scholar
  5. 5.
    Parikh, J., Selmi, M., Charles-Edwards, G., Glendenning, J., Ganeshan, B., Verma, H., Mansi, J., Harries, M., Tutt, A., Goh, V.: Changes in primary breast cancer heterogeneity may augment midtreatment MR imaging assessment of response to neoadjuvant chemotherapy. Radiology (in press, 2014)Google Scholar
  6. 6.
    Ganeshan, B., Goh, V., Mandeville, H., Ng, Q., Hoskin, P., Miles, K.: Non-small cell lung cancer: histopathologic correlates for texture parameters at CT. Radiology 266(1), 326–336 (2013)CrossRefGoogle Scholar
  7. 7.
    Zhang, J., Yu, C., Jiang, G., Liu, W., Tong, L.: 3D texture analysis on MRI images of Alzheimer’s disease. Brain Imaging Behav. 6(1), 61–69 (2012)CrossRefGoogle Scholar
  8. 8.
    Win, T., Miles, K., Janes, S., Ganeshan, B., Shastry, M., Endozo, R., Meagher, M., Shortman, R., Wan, S., Kayani, I., Ell, P., Groves, A.: Tumor heterogeneity and permeability as measured on the CT component of PET/CT predict survival in patients with non-small cell lung cancer. Clin. Cancer Res. 19(13), 3591–3599 (2013)CrossRefGoogle Scholar
  9. 9.
    Castellano, G., Bonilha, L., Li, L., Cendes, F.: Texture analysis of medical images. Clin. Radiol. 59(12), 1061–1069 (2004)CrossRefGoogle Scholar
  10. 10.
    Tourassi, G.D.: Journey towards computer-aided diagnosis: role of image texture analysis. Radiology 213, 317–320 (1999)CrossRefGoogle Scholar
  11. 11.
    Ganeshan, B., Miles, K.A., Young, R.C., Chatwin, C.R.: Texture analysis in non-contrast enhanced CT: Impact of malignancy on texture in apparently disease-free areas of the liver. European J. of Radiol. 70(1), 101–110 (2009)CrossRefGoogle Scholar
  12. 12.
    Marr, D.: Representing the image: zero-crossings and the raw primal sketch. In: Wilson, J., Monsour, P. (eds.) Vision, pp. 54–68 (1982)Google Scholar
  13. 13.
    Miles, K., Ganeshan, B., Hayball, M.: CT texture analysis using the filtration-histogram method: what do the measurements mean? Cancer Imag. 13(3), 400–406 (2013)CrossRefGoogle Scholar
  14. 14.
    Perlich, C., Świrszcz, G.: On cross-validation and stacking: Building seemingly predictive models on random data. SIGKDD Explor. Newsl. 12(2), 11–15 (2011)CrossRefGoogle Scholar
  15. 15.
    Kawulok, M., Nalepa, J.: Support vector machines training data selection using a genetic algorithm. In: Gimel’farb, G., Hancock, E., Imiya, A., Kuijper, A., Kudo, M., Omachi, S., Windeatt, T., Yamada, K. (eds.) SSPR&SPR 2012. LNCS, vol. 7626, pp. 557–565. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jakub Nalepa
    • 1
    • 5
  • Janusz Szymanek
    • 5
  • Michael P. Hayball
    • 2
    • 3
  • Stephen J. Brown
    • 3
  • Balaji Ganeshan
    • 2
    • 4
  • Kenneth Miles
    • 4
  1. 1.Silesian University of TechnologyPoland
  2. 2.TexRAD LtdUK
  3. 3.Cambridge Computed ImagingUK
  4. 4.University College LondonUK
  5. 5.Future ProcessingPoland

Personalised recommendations