Fast Histogram Based Image Binarization Using the Monte Carlo Threshold Estimation

  • Piotr Lech
  • Krzysztof Okarma
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8671)

Abstract

In the paper the idea of universal fast image binarization method is discussed which utilizes the histogram estimation using the Monte Carlo approach. Proposed reduction of the computational burden dependent on the number of analyzed pixels may be useful especially in real-time and embedded systems with limited amount of memory and processing power. An additional advantage of such simplified approach is relatively easy implementation independently on the used programming language.

The experimental results obtained for some typical benchmark datasets used in DIBCO contests, confirm the effectiveness and usefulness of the proposed approach for popular histogram based image binarization algorithms. As shown by presented results, the proposed method can also be useful as a pre-processing step for the Optical Character Recognition systems.

Keywords

image binarization thresholding Monte Carlo method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    dos Anjos, A., Shahbazkia, H.: Bi-level image thresholding - a fast method. In: Encarnação, P., Veloso, A. (eds.) BIOSIGNALS, pp. 70–76. INSTICC - Institute for Systems and Technologies of Information, Control and Communication (2008)Google Scholar
  2. 2.
    Chou, C.H., Hsu, Y.H.: Image quality assessment based on binary structure information. In: Proc. 7th Int. Conf. Computational Intelligence and Security (CIS), pp. 1136–1140 (2011)Google Scholar
  3. 3.
    Frejlichowski, D., Forczmański, P.: General shape analysis applied to stamps retrieval from scanned documents. In: Dicheva, D., Dochev, D. (eds.) AIMSA 2010. LNCS, vol. 6304, pp. 251–260. Springer, Heidelberg (2010)Google Scholar
  4. 4.
    Iwanowski, M.: Morphological classification of binary image pixels. Machine Graphics and Vision 18(2), 155–173 (2009)Google Scholar
  5. 5.
    Kapur, J., Sahoo, P., Wong, A.: A new method for gray-level picture thresholding using the entropy of the histogram. Computer Vision, Graphics, and Image Processing 29(3), 273–285 (1985)CrossRefGoogle Scholar
  6. 6.
    Lech, P., Okarma, K.: Optimization of the fast image binarization method based on the Monte Carlo approach. Elektronika Ir Elektrotechnika 20(4), 63–66 (2014)CrossRefGoogle Scholar
  7. 7.
    Lech, P., Okarma, K., Tecław, M.: A fast histogram estimation based on the Monte Carlo method for image binarization. In: Choras, R.S. (ed.) Image Processing and Communications Challenges 5. AISC, vol. 233, pp. 73–80. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  8. 8.
    Lu, H., Kot, A., Shi, Y.: Distance-reciprocal distortion measure for binary document images. IEEE Signal Processing Letters 11(2), 228–231 (2004)CrossRefGoogle Scholar
  9. 9.
    Ntirogiannis, K., Gatos, B., Pratikakis, I.: Performance evaluation methodology for historical document image binarization. IEEE Trans. Image Processing 22(2), 595–609 (2013)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Ntirogiannis, K., Gatos, B., Pratikakis, I.: A combined approach for the binarization of handwritten document images. Pattern Recognition Letters 35, 3–15 (2014); frontiers in Handwriting ProcessingGoogle Scholar
  11. 11.
    Okarma, K., Lech, P.: Application of the Monte Carlo preliminary image analysis and classification method for the automatic reservation of parking space. Machine Graphics and Vision 18(4), 439–452 (2009)Google Scholar
  12. 12.
    Oszutowska–Mazurek, D., Mazurek, P., Sycz, K., Waker–Wójciuk, G.: Adaptive windowed threshold for box counting algorithm in cytoscreening applications. In: Choras, R.S. (ed.) Image Processing and Communications Challenges 5. AISC, vol. 233, pp. 3–12. Springer, Heidelberg (2014)Google Scholar
  13. 13.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Systems, Man and Cybernetics 9(1), 62–66 (1979)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Pratikakis, I., Gatos, B., Ntirogiannis, K.: ICDAR 2013 Document Image Binarization Contest (DIBCO 2013). In: Proc. 12th Int. Conf. Document Analysis and Recognition ICDAR, pp. 1471–1476 (2013)Google Scholar
  15. 15.
    Rosin, P.L.: Unimodal thresholding. Pattern Recognition 34(11), 2083–2096 (2001)CrossRefMATHGoogle Scholar
  16. 16.
    Zhang, F., Cao, K., Zhang, J.L.: A simple quality evaluation method of binary images based on border distance. Optik - International Journal for Light and Electron Optics 122(14), 1236–1239 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Piotr Lech
    • 1
  • Krzysztof Okarma
    • 1
  1. 1.Faculty of Electrical Engineering, Department of Signal Processing and Multimedia EngineeringWest Pomeranian University of Technology, SzczecinSzczecinPoland

Personalised recommendations