Performance Evaluation of Binary Descriptors of Local Features

  • Jan Figat
  • Tomasz Kornuta
  • Włodzimierz Kasprzak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8671)

Abstract

The article is devoted to the evaluation of performance of image features with binary descriptors for the purpose of their utilization in recognition of objects by service robots. In the conducted experiments we used the dataset and followed the methodology proposed by Mikolajczyk and Schmid. The performance analysis takes into account the discriminative power of a combination of keypoint detector and feature descriptor, as well as time consumption.

Keywords

performance evaluation image features binary descriptors SIFT FAST BRIEF BRISK ORB FREAK 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  2. 2.
    Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: Binary Robust Independent Elementary Features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Leutenegger, S., Chli, M., Siegwart, R.Y.: Brisk: Binary robust invariant scalable keypoints. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2548–2555. IEEE (2011)Google Scholar
  5. 5.
    Alahi, A., Ortiz, R., Vandergheynst, P.: FREAK: Fast Retina Keypoint. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 510–517. IEEE (2012)Google Scholar
  6. 6.
    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: an efficient alternative to sift or surf. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2564–2571. IEEE (2011)Google Scholar
  7. 7.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(10), 1615–1630 (2005)CrossRefGoogle Scholar
  8. 8.
    Bradski, G., Kaehler, A.: Learning OpenCV: Computer Vision with the OpenCV Library, 1st edn. O’Reilly (September 2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jan Figat
    • 1
  • Tomasz Kornuta
    • 1
  • Włodzimierz Kasprzak
    • 1
  1. 1.Institute of Control and Computation Eng.Warsaw University of TechnologyWarsawPoland

Personalised recommendations