Simulated Holography Based on Stereoscopy and Face Tracking

  • Łukasz Dąbała
  • Przemysław Rokita
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8671)


Virtual reality systems are getting more and more popular nowadays. They give user ability to manipulate content without using common hardware controllers such as keyboard or mouse. We propose the method for presenting a stereoscopic content for the user, which uses face tracking technique for changing the position of the viewer on virtual scene. We achieved the impression of holography, where person can see the object from different points of view. At the same time we are creating realistically looking images and assuring interactivity of the system.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dąbała, Ł., Kellnhofer, P., Ritschel, T., Didyk, P., Templin, K., Myszkowski, K., Rokita, P., Seidel, H.-P.: Manipulating refractive and reflective binocular disparity. Computer Graphics Forum (Proc. Eurographics 2012) 33(2) (2014)Google Scholar
  2. 2.
    Garstka, J., Peters, G.: View-dependent 3d projection using depth-image-based head tracking. In: 8th IEEE International Workshop on Projector Camera Systems, PROCAMS, pp. 52–57 (2011)Google Scholar
  3. 3.
    Greene, N.: Environment mapping and other applications of world projections. IEEE Comp. Graph. and App. 6(11), 21–29 (1986)CrossRefGoogle Scholar
  4. 4.
    Nguyen Hoang, A., Tran Hoang, V., Kim, D.: A real-time rendering technique for view-dependent stereoscopy based on face tracking. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013, Part I. LNCS, vol. 7971, pp. 697–707. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Howard, I.P., Rogers, B.J.: Perceiving in Depth, vol. 2: Stereoscopic Vision. OUP USA (2012)Google Scholar
  6. 6.
    Lambooij, M., IJsselsteijn, W., Fortuin, M., Heynderickx, I.: Visual discomfort and visual fatigue of stereoscopic displays: A review. J. Imag. Sci. and Tech. 53(3), 1–12 (2009)Google Scholar
  7. 7.
    Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence, IJCAI 1981, vol. 2, pp. 674–679. Morgan Kaufmann Publishers Inc., San Francisco (1981)Google Scholar
  8. 8.
    Palmer, S.E.: Vision Science: Photons to Phenomenology. The MIT Press (1999)Google Scholar
  9. 9.
    Piérard, S., Pierlot, V., Lejeune, A., Van Droogenbroeck, M.: I-see-3D! An interactive and immersive system that dynamically adapts 2D projections to the location of a user’s eyes. In: International Conference on 3D Imaging (IC3D), Liège, Belgium (December 2012)Google Scholar
  10. 10.
    Purcell, T.J., Buck, I., Mark, W.R., Hanrahan, P.: Ray tracing on programmable graphics hardware. ACM Trans. Graph. (Proc. SIGGRAPH) 21(3), 703–712 (2002)Google Scholar
  11. 11.
    Schlick, C.: An inexpensive brdf model for physically-based rendering. Comp. Graph. Forum 13(3), 233–246 (1994)CrossRefGoogle Scholar
  12. 12.
    Shibata, T., Kim, J., Hoffman, D.M., Banks, M.S.: The zone of comfort: Predicting visual discomfort with stereo displays. J. Vis. 11(8) (2011)Google Scholar
  13. 13.
    Slotsbo, P.: 3D interactive and view dependent stereo rendering (2004)Google Scholar
  14. 14.
    Templin, K., Didyk, P., Ritschel, T., Myszkowski, K., Seidel, H.-P.: Highlight microdisparity for improved gloss depiction. ACM Trans. Graph. (Proc. SIGGRAPH) 31(4), 92 (2012)Google Scholar
  15. 15.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features, pp. 511–518 (2001)Google Scholar
  16. 16.
    Wald, I., Boulos, S., Shirley, P.: Ray tracing deformable scenes using dynamic bounding volume hierarchies. ACM Trans. Graph. 26(1), 6 (2007)Google Scholar
  17. 17.
    Whitted, T.: An improved illumination model for shaded display. ACM SIGGRAPH Computer Graphics 13, 14 (1979)CrossRefGoogle Scholar
  18. 18.
    Zhang, C., Yin, Z., Florencio, D.A.F.: Improving depth perception with motion parallax and its application in teleconferencing. In: MMSP, pp. 1–6. IEEE (2009)Google Scholar
  19. 19.
    Zhukov, S., Iones, A., Kronin, G.: An ambient light illumination model. In: Proc. EGSR, pp. 45–55 (1998)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Łukasz Dąbała
    • 1
  • Przemysław Rokita
    • 1
  1. 1.Institute of Computer ScienceWarsaw University of TechnologyWarsawPoland

Personalised recommendations