A Modular Workflow Architecture for Coronary Centerline Extraction in Computed Tomography Angiography Data

  • Esteban Correa-Agudelo
  • Leonardo Flórez-Valencia
  • Maciej Orkisz
  • Claire Mouton
  • Eduardo E. Dávila Serrano
  • Marcela Hernández Hoyos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8671)

Abstract

Efficient and reliable extraction of coronary artery centerline from computed tomography angiography data is a prerequisite for a variety of medical imaging applications. Many authors have combined minimum-cost path algorithms and vesselness measures to extract coronary centerlines. We propose a modular decomposition of this extraction process, in order to facilitate the implementation and comparison of different minimum-cost path strategies allowing users (radiologists and developers) to focus on subsequent image analysis tasks. Evaluation results show a good overlap (> 84%), and small distances with regard to reference centerlines (on average, not larger than the voxel size) in multi-vendor datasets, for two combinations of algorithms that follow this framework. Therefore, it can serve as a starting point to subsequent image analysis stages that require coronary centerlines.

Keywords

centerline extraction vesselness minimum cost-path algorithms computed tomography coronary arteries 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kirişli, H.A., Schaap, M., Metz, C., Dharampal, A.S., Meijboom, W.B., et al.: Standardized evaluation framework for evaluating coronary artery stenoses detection, stenoses quantification and lumen segmentation algorithms in Computed Tomography Angiography. Med. Image Anal. 17(8), 859–876 (2013)CrossRefGoogle Scholar
  2. 2.
    Schaap, M., Metz, C.T., van Walsum, T., van der Giessen, A.G., Weustink, A.C., Mollet, N.R., et al.: Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms. Medical Image Analysis 13(5), 701–714 (2009)CrossRefGoogle Scholar
  3. 3.
    Gülsün, M.A., Tek, H.: Robust vessel tree modeling. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 602–611. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Dikici, E., O’Donnell, T., Grady, L., White, R.: Coronary artery centerline tracking using axial symmetries. In: MICCAI Workshop - Grand Challenge Coronary Artery Tracking, New York City, USA (2008)Google Scholar
  5. 5.
    Krissian, K., Bogunovic, H., Pozo, J., Villa-Uriol, M., Frangi, A.: Minimally interactive knowledge-based coronary tracking in CTA using a minimal cost path. In: MICCAI Workshop - Grand Challenge Coronary Artery Tracking, New York City, USA (2008)Google Scholar
  6. 6.
    Zhang, Y., Chen, K., Wong, S.: 3D interactive centerline extraction. In: MICCAI Workshop - Grand Challenge Coronary Artery Tracking, New York City, USA (2008)Google Scholar
  7. 7.
    Friman, O., Kuehnel, C., Peitgen, H.: Coronary centerline extraction using multiple hypothesis tracking and minimal paths. In: MICCAI Workshop - Grand Challenge Coronary Artery Tracking, New York City, USA (2008)Google Scholar
  8. 8.
    Metz, C.T., Schaap, M., Weustink, A.C., Mollet, N.R.A., van Walsum, T., Niessen, W.J.: Coronary centerline extraction from CT coronary angiography images using a minimum cost path approach. Med. Phys. 36(12), 5568–5579 (2009)CrossRefGoogle Scholar
  9. 9.
    Dávila Serrano, E.E., Guigues, L., Roux, J.-P., Cervenansky, F., Camarasu-Pop, S., Riveros Reyes, J.G., Flórez-Valencia, L., Hernández Hoyos, M., Orkisz, M.: CreaTools: A framework to develop medical image processing software: Application to simulate pipeline stent deployment in intracranial vessels with aneurysms. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2012. LNCS, vol. 7594, pp. 55–62. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  11. 11.
    Lesage, D., Angelini, E.D., Bloch, I., Funka-Lea, G.: Design and study of flux-based features for 3D vascular tracking. In: IEEE Int. Symp. Biomed. Imaging: From Nano to Macro, ISBI 2009, Piscataway, NJ, USA, pp. 286–289 (2009)Google Scholar
  12. 12.
    Yang, G., Kitslaar, P., Frenay, M., Broersen, A., Boogers, M.J., Bax, J.J., Reiber, J.H., Dijkstra, J.: Automatic centerline extraction of coronary arteries in coronary computed tomographic angiography. Int. J. Cardiovasc. Imaging 28(4), 921–933 (2012)CrossRefGoogle Scholar
  13. 13.
    Kanitsar, A., Fleischmann, D., Wegenkittl, R., Felkel, P., Gröller, M.: CPR - curved planar reformation. In: Visualization 2002, pp. 37–44. IEEE (2002)Google Scholar
  14. 14.
    Bartels, J.C., Beatty, R.H., Barsky, B.A.: Bézier curves, ch. 10, pp. 211–245. Morgan Kaufmann Publishers, Inc. (November 1987)Google Scholar
  15. 15.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1(1), 269–271 (1959)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Esteban Correa-Agudelo
    • 1
    • 3
  • Leonardo Flórez-Valencia
    • 2
  • Maciej Orkisz
    • 1
  • Claire Mouton
    • 1
  • Eduardo E. Dávila Serrano
    • 1
  • Marcela Hernández Hoyos
    • 3
  1. 1.Université de Lyon, CREATIS; CNRS UMR5220; INSERM U1044; INSA-Lyon, Université Lyon 1France
  2. 2.Grupo Takina, Pontificia Universidad JaverianaBogotáColombia
  3. 3.Systems and Computing Engineering Department, School of EngineeringUniversidad de los AndesBogotáColombia

Personalised recommendations