Advantages of Using Object-Specific Knowledge at an Early Processing Stage in the Detection of Trees in LIDAR Data

  • Leszek J. Chmielewski
  • Marcin Bator
  • Marcin Olejniczak
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8671)


In some imaging setups the following assumptions hold: the objects are opaque and viewed only from one point, their surface is continuous at least piecewise, and the occluding objects are small with respect to the viewed objects. In addition, in the application of our interest the images can be treated similarly to the case of the plane of light. This made it possible to design algorithms with some desired features: the segmentation based on sorting the data according to angle and the version of the object verification method using fuzzy voting with the positive and negative evidence. The algorithms have some opposite and complementary features which could be used in application to LIDAR data in the measurements of trees and forest.


Opacity sorting angle Hough transform voting against negative evidence LIDAR trees forest breast-height diameter 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ballard, D., Brown, C.M.: Computer Vision. Prentice Hall, Englewood Cliffs (1982)Google Scholar
  2. 2.
    Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.): ICCVG 2012. LNCS, vol. 7594. Springer, Heidelberg (2012)Google Scholar
  3. 3.
    Brolly, G., Király, G., Czimber, K.: Mapping forest regeneration from terrestrial laser scans. Acta Silvatica et Lignaria Hungarica 9, 135–146 (2014), doi:10.2478/aslh-2013-0011Google Scholar
  4. 4.
    Brown, C.M., Curtiss, M.B., Sher, D.B.: Advanced Hough transform implementations. In: Bundy, A. (ed.) Proc. 8th Int. Joint Conf. Artificial Intelligence, IJCAI 1983, pp. 1081–1085. William Kufmann, Karlsruhe (1983)Google Scholar
  5. 5.
    Chmielewski, L.J., Bator, M.: Hough transform for opaque circles measured from outside and fuzzy voting for and against. In: Bolc, et al. (eds.) [2], pp. 313–320, doi:10.1007/978-3-642-33564-8_38Google Scholar
  6. 6.
    Czúni, L., Csordás, D.: Depth-based indexing and retrieval of photographic images. In: García, N., Salgado, L., Martínez, J.M. (eds.) VLBV 2003. LNCS, vol. 2849, pp. 76–83. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Frejlichowski, D.: Analysis of four polar shape descriptors properties in an exemplary application. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2010, Part I. LNCS, vol. 6374, pp. 376–383. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Frejlichowski, D., Forczmański, P., Nowosielski, A., Gościewska, K., Hofman, R.: SmartMonitor: An approach to simple, intelligent and affordable visual surveillance system. In: Bolc, et al. (eds.) [2], pp. 726–734, doi:10.1007/978-3-642-33564-8_87Google Scholar
  9. 9.
    Kozera, R., Noakes, L., Szmielew, P.: Quartic Orders and Sharpness in Trajectory Estimation for Smooth Cumulative Chord Cubics. In: Chmielewski, L.J., Kozera, R., Shin, B.-S., Wojciechowski, K. (eds.) ICCVG 2014. LNCS, vol. 8671, pp. 9–16. Springer, Heidelberg (2014)Google Scholar
  10. 10.
    Leavers, V.F.: Shape Detection in Computer Vision Using the Hough Transform. Springer, London (1992)CrossRefGoogle Scholar
  11. 11.
    Leś, T., Kruk, M., Osowski, S.: Automatic recognition of industrial tools using artificial intelligence approach. Expert Systems with Applications 40(12), 4777–4784 (2013), doi:10.1016/j.eswa.2013.02.030CrossRefGoogle Scholar
  12. 12.
    Miścicki, S., Stereńczak, K.: A two-phase inventory method for calculating standing volume and tree-density of forest stands in central Poland based on airborne laser-scanning data. Forest Research Papers 74(2), 127–136 (2013), doi:10.2478/frp-2013-0013Google Scholar
  13. 13.
    Olofsson, K., Holmgren, J., Olsson, H.: Tree stem and height measurements using terrestrial laser scanning and the ransac algorithm. Remote Sensing 6(5), 4323–4344 (2014), doi:10.3390/rs6054323CrossRefGoogle Scholar
  14. 14.
    Stereńczak, K., Zasada, M., Brach, M.: The accuracy assessment of DTM generated from LIDAR data for forest area – a case study for scots pine stands in Poland. Baltic Forestry 19(2), 252–262 (2013)Google Scholar
  15. 15.
    Zasada, M., Stereńczak, K., Dudek, W.M., Rybski, A.: Horizon visibility and accuracy of stocking determination on circular sample plots using automated remote measurement techniques. Forest Ecology and Management 302(0), 171–177 (2013), doi:10.1016/j.foreco.2013.03.041CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Leszek J. Chmielewski
    • 1
  • Marcin Bator
    • 1
  • Marcin Olejniczak
    • 1
  1. 1.Faculty of Applied Informatics and Mathematics (WZIM)Warsaw University of Life Sciences (SGGW)WarsawPoland

Personalised recommendations