Advertisement

Using Ant Colony Optimization and Genetic Algorithms for the Linguistic Summarization of Creep Data

  • Carlos A. Donis-DíazEmail author
  • Rafael Bello
  • Janusz Kacprzyk
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 322)

Abstract

Some models using metaheuristics based in an “improvement of solutions” procedure, specifically Genetic Algorithms (GA), have been proposed previously to the linguistic summarization of numerical data (LDS). In the present work is proposed a new model for LDS based in Ant Colony Optimization (ACO), a metaheuristic that use a “construction of solution” procedure. Both models are compared in LDS over creep data. Results show how the ACO based model overcomes the measures of goodness of the final summary but fails to improve the results of the GA based model in relation to the diversity of the summary. Features of both models are considered to explain the results.

Keywords

Linguistic Data Summarization Ant Colony Optimization Genetic Algorithms Fuzzy Logic Creep rupture stress 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yager, R.R.: A new approach to the summarization of data. Information Sciences 28, 69–86 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Kacprzyk, J.: Intelligent data analysis via linguistic data summaries: a fuzzy logic approach. In: Decker, R., Gaul, W. (eds.) Classification and Information Processing at the Turn of the Millennium, pp. 153–161. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Kacprzyk, J., Yager, R.R.: Linguistic summaries of data using fuzzy logic. International Journal of General Systems 30(2), 133–154 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Kacprzyk, J., Zadrożny, S.: Computing with words: towards a new generation of linguistic querying and summarization of databases. In: Sinčak, P., Vaščak, J. (eds.) Quo Vadis Computational Intelligence?, pp. 144–175. Physica-Verlag, Heidelberg (2000)Google Scholar
  5. 5.
    Castillo-Ortega, R., et al.: Linguistic Summarization of Time Series Data using Genetic Algorithms. In: 7th Conference of European Society for Fuzzy Logic and Technology - EUSFLAT 2011, Atlantis Press, Aix-les-Bains (2011)Google Scholar
  6. 6.
    Castillo-Ortega, R., et al.: A Multi-Objective Memetic Algorithm for the Linguistic Summarization of Time Series. In: 13th Annual Genetic and Evolutionary Computation Conference - GECCO 2011. ACM, Dublin (2011)Google Scholar
  7. 7.
    George, R., Srikanth, R.: Data summarization using genetic algorithms and fuzzy logic. In: Herrera, F., Verdegay, J.L. (eds.) Genetic Algorithms and Soft Computing, pp. 599–611. Physica-Verlag, Heidelberg (1996)Google Scholar
  8. 8.
    Kacprzyk, J., Wilbik, A., Zadrożny, S.: Using a Genetic Algorithm to Derive a Linguistic Summary of Trends in Numerical Time Series. In: International Symposium on Evolving Fuzzy Systems, Ambleside (2006)Google Scholar
  9. 9.
    Kacprzyk, J., Wilbik, A., Zadrożny, S.: Linguistic summarization of time series using a fuzzy quantifier driven aggregation. Fuzzy Sets and Systems 159(12), 1485–1499 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Donis-Diaz, C.A., et al.: A hybrid model of genetic algorithm with local search to discover linguistic data summaries from creep data. Expert System with Applications 41(4), 2035–2042 (2014)CrossRefGoogle Scholar
  11. 11.
    Zadeh, L.: A computational approach to fuzzy quantifiers in natural languages. Computers and Mathematics with Applications 9, 149–184 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Parpinelli, R., Lopes, H., Freitas, A.: Data mining with an ant colony optimization algorithm. IEEE Transactions on Evolutionary Computation 6(4), 321–332 (2002)CrossRefGoogle Scholar
  13. 13.
    Otero, F.B., Freitas, A., Johnson, C.G.: A New Sequential Covering Strategy for Inducing Classification Rules with Ant Colony Algorithms. IEEE Transactions on Evolutionary Computation 17(4), 64–76 (2013)CrossRefGoogle Scholar
  14. 14.
    Alatas, B., Akin, E.: FCACO: Fuzzy Classification Rules Mining Algorithm with Ant Colony Optimization. In: Wang, L., Chen, K., S. Ong, Y. (eds.) ICNC 2005. LNCS, vol. 3612, pp. 787–797. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Stützle, T., Hoos, H.: MAX-MIN ant system. Future Generation Computer Systems 16(8), 889–914 (2000)CrossRefGoogle Scholar
  16. 16.
    Dorigo, M., Colorni, A., Maniezzo, V.: The Ant System: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics-Part B 26(1), 1–13 (1996)CrossRefGoogle Scholar
  17. 17.
    Dorigo, M., Stützle, T.: Ant Colony Optimization: Overview and Recent Advances. In: Gendreau, M., Potvin, Y. (eds.) Handbook of Metaheuristics, pp. 227–263. Springer, New York (2010)CrossRefGoogle Scholar
  18. 18.
    Dorigo, M., Birattari, M., Stützle, T.: Ant Colony Optimization- Artificial Ants as a Computational Intelligence. IEEE Computational Intelligence Magazine 1, 28–39 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Carlos A. Donis-Díaz
    • 1
    Email author
  • Rafael Bello
    • 1
  • Janusz Kacprzyk
    • 2
  1. 1.Informatic Studies CenterUniversidad Central Marta Abreu de Las VillasSanta ClaraCuba
  2. 2.Systems Research InstitutePolish Academy of SciencesWarsawPoland

Personalised recommendations