Towards Perception-Oriented Situation Awareness Systems

  • Gianpio BenincasaEmail author
  • Giuseppe D’Aniello
  • Carmen De Maio
  • Vincenzo Loia
  • Francesco Orciuoli
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 322)


This paper proposes a new approach for identifying situations from sensor data by using a perception-based mechanism that has been borrowed from humans: sensation, perception and cognition. The proposed approach is based on two phases: low-level perception and high-level perception. The first one is realized by means of semantic technologies and allows to generate more abstract information from raw sensor data by also considering knowledge about the environment. The second one is realized by means of Fuzzy Formal Concept Analysis and allows to organize and classify abstract information, coming from the first phase, by generating a knowledge representation structure, namely lattice, that can be traversed to obtain information about occurring situation and augment human perception. The work proposes also a sample scenario executed in the context of an early experimentation.


Computer Perception Situation Awareness Ontologies Fuzzy Formal Concept Analysis Intelligent Systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barnaghi, P., Ganz, F., Henson, C., Sheth, A.: Computing perception from sensor data (2012)Google Scholar
  2. 2.
    Chalmers, D.J., French, R.M., Hofstadter, D.R.: High-level perception, representation, and analogy: A critique of artificial intelligence methodology. Journal of Experimental and Theoretical Artificial Intelligence 4, 185–211 (1992)CrossRefGoogle Scholar
  3. 3.
    De Maio, C., Fenza, G., Loia, V., Senatore, S.: Hierarchical web resources retrieval by exploiting fuzzy formal concept analysis. Information Processing & Management 48(3), 399–418 (2012) Soft Approaches to IA on the WebGoogle Scholar
  4. 4.
    Endsley, M.R.: Toward a theory of situation awareness in dynamic systems. Human Factors: The Journal of the Human Factors and Ergonomics Society 37(33), 32–64 (1995)CrossRefGoogle Scholar
  5. 5.
    Fole, H.J., Matlin, M.W. (eds.): Sensation and Perception. Allyn and Bacon, Newton (1997)Google Scholar
  6. 6.
    Jelsteen, J., Evangelin, D., Alice Pushparani, J., Nelson Samuel Jebastin, J.: Ontology learning process using fuzzy formal concept analysis. International Journal of Engineering Trends and Technology 4(2), 148–152 (2013)Google Scholar
  7. 7.
    Perera, C., Zaslavsky, A.B., Compton, M., Christen, P., Georgakopoulos, D.: Semantic-driven configuration of internet of things middleware. CoRR abs/1309.1515 (2013)Google Scholar
  8. 8.
    Robertsson, L., Iliev, B., Palm, R., Wide, P.: Perception modeling for human-like artificial sensor systems. Int. J. Hum.-Comput. Stud. 65(5), 446–459 (2007)CrossRefGoogle Scholar
  9. 9.
    Tho, Q., Hui, S., Fong, A.C.M., Cao, T.H.: Automatic fuzzy ontology generation for semantic web. IEEE Transactions on Knowledge and Data Engineering 18(6), 842–856 (2006)CrossRefGoogle Scholar
  10. 10.
    Ye, J., Dobson, S., McKeever, S.: Situation identification techniques in pervasive computing: A review. Pervasive and Mobile Computing 8(1), 36–66 (2012)CrossRefGoogle Scholar
  11. 11.
    Zadeh, L.A.: A new direction in AI - toward a computational theory of perceptions. In: Reusch, B. (ed.) Fuzzy Days 2001. LNCS, vol. 2206, p. 628. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Zhou, B., Hui, S., Chang, K.: A formal concept analysis approach for web usage mining. In: Intelligent Information Processing II, IFIP International Federation for Information Processing, vol. 163, pp. 437–441. Springer (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Gianpio Benincasa
    • 1
    Email author
  • Giuseppe D’Aniello
    • 1
  • Carmen De Maio
    • 1
  • Vincenzo Loia
    • 1
  • Francesco Orciuoli
    • 1
  1. 1.University of SalernoFiscianoItaly

Personalised recommendations