Advertisement

A Neutral Mutation Operator in Grammatical Evolution

  • Christian Oesch
  • Dietmar Maringer
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 322)

Abstract

In this paper we propose a Neutral Mutation Operator (NMO) for Grammatical Evolution (GE). This novel operator is inspired by GE’s ability to create genetic diversity without causing changes in the phenotype. Neutral mutation happens naturally in the algorithm; however, forcing such changes increases success rates in symbolic regression problems profoundly with very low additional CPU and memory cost. By exploiting the genotype-phenotype mapping, this additional mutation operator allows the algorithm to explore the search space more efficiently by keeping constant genetic diversity in the population which increases the mutation potential. The NMO can be applied in combination with any other genetic operator or even different search algorithms (e.g. Differential Evolution or Particle Swarm Optimization) for GE and works especially well in small populations and larger problems.

Keywords

Grammatical Evolution Neutral Evolution Genetic Operator Genotype-Phenotype Mapping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de la Puente, A.O., Alfonso, R.S., Moreno, M.A.: Automatic composition of music by means of grammatical evolution. ACM SIGAPL APL Quote Quad 32(4), 148–155 (2002)CrossRefGoogle Scholar
  2. 2.
    Kimura, M.: The neutral theory of molecular evolution. Cambridge University Press (1984)Google Scholar
  3. 3.
    Koza, J.R.: Genetic Programming: on the programming of computers by means of natural selection. A Bradford Book. The MIT Press (1992)Google Scholar
  4. 4.
    Moore, J.H., Hahn, L.W.: Petri net modeling of high-order genetic systems using grammatical evolution. BioSystems 72(1), 177–186 (2003)CrossRefGoogle Scholar
  5. 5.
    O’Neill, M., Brabazon, A., Ryan, C., Collins, J.J.: Evolving Market Index Trading Rules Using Grammatical Evolution. In: Boers, E.J.W., Gottlieb, J., Lanzi, P.L., Smith, R.E., Cagnoni, S., Hart, E., Raidl, G.R., Tijink, H. (eds.) EvoWorkshop 2001. LNCS, vol. 2037, pp. 343–352. Springer, Heidelberg (2001)Google Scholar
  6. 6.
    O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Transactions on Evolutionary Computation 5(4), 349–358 (2001)CrossRefGoogle Scholar
  7. 7.
    Ryan, C., Collins, J.J., Neill, M.O.: Grammatical evolution: Evolving programs for an arbitrary language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, pp. 83–95. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Christian Oesch
    • 1
  • Dietmar Maringer
    • 1
  1. 1.Faculty of Business and EconomicsUniversity of BaselBaselSwitzerland

Personalised recommendations