Some Remarks on the Fuzzy Linguistic Model Based on Discrete Fuzzy Numbers

  • Enrique Herrera-Viedma
  • Juan Vicente Riera
  • Sebastià Massanet
  • Joan Torrens
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 322)

Abstract

In this article, some possible interpretations of the computational model based on discrete fuzzy numbers are given. In particular, some advantages of this model based on the aggregation process as well as on a greater flexibilization of the linguistic expressions are analysed. Finally, a fuzzy decision making model based on this kind on fuzzy subsets is proposed.

Keywords

Discrete fuzzy numbers subjective evaluation hesitant fuzzy linguistic term set multicriteria decision making problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Herrera, F., Herrera-Viedma, E., Verdegay, J.L.: Direct approach processes in group decision making using linguistic OWA operators. Fuzzy Sets and Systems 79, 175–190 (1994)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Herrera, F., Alonso, S., Chiclana, F., Herrera-Viedma, E.: Computing with words in decision making: Foundations, trends and prospects. Fuzzy Optimization and Decision Making 8(4), 337–364 (2009)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Herrera, F., Martínez, L.: A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Transactions on Fuzzy Systems 8(6), 746–752 (2000)CrossRefGoogle Scholar
  4. 4.
    Türksen, I.: Type 2 representation and reasoning for CWW. Fuzzy Sets and Systems 127(1), 17–36 (2002)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Wang, J.-H., Hao, J.: A new version of 2-tuple fuzzy linguistic representation model for computing with words. IEEE Transactions on Fuzzy Systems 14(3), 435–445 (2006)CrossRefGoogle Scholar
  6. 6.
    Cabrerizo, F.J., Herrera-Viedma, E., Pedrycz, W.: A method based on PSO and granular computing of linguistic information to solve group decision making problems defined in heterogeneous contexts. European Journal of Operational Research 230(3), 624–633 (2013)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Rodríguez, R., Martínez, L., Herrera, F.: Hesitant fuzzy linguistic term sets for decision making. IEEE Transactions on Fuzzy Systems 20(1), 109–119 (2012)CrossRefGoogle Scholar
  8. 8.
    Rodríguez, R., Martínez, L., Herrera, F.: A group decision making model dealing with comparative linguistic expressions based on hesitant fuzzy linguistic term sets. Information Sciences 241, 28–42 (2013)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Casasnovas, J., Riera, J.V.: Extension of discrete t-norms and t-conorms to discrete fuzzy numbers. Fuzzy Sets and Systems 167(1), 65–81 (2011)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Casasnovas, J., Riera, J.V.: Weighted means of subjective evaluations. In: Seising, R., Sanz González, V. (eds.) Soft Computing in Humanities and Social Sciences. STUDFUZZ, vol. 273, pp. 331–354. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Massanet, S., Riera, J.V., Torrens, J., Herrera-Viedma, E.: A new linguistic computational model based on discrete fuzzy numbers for computing with words. Information Sciences 258, 277–290 (2014)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Riera, J.V., Torrens, J.: Aggregation of subjective evaluations based on discrete fuzzy numbers. Fuzzy Sets and Systems 191, 21–40 (2012)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Riera, J.V., Torrens, J.: Aggregation functions on the set of discrete fuzzy numbers defined from a pair of discrete aggregations. Fuzzy Sets and Systems 241, 76–93 (2014)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Voxman, W.: Canonical representations of discrete fuzzy numbers. Fuzzy Sets and Systems 118(3), 457–466 (2001)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Mayor, G., Torrens, J.: Triangular norms in discrete settings. In: Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms, pp. 189–230. Elsevier (2005)Google Scholar
  16. 16.
    De Baets, B., Mesiar, R.: Triangular norms on product lattices. Fuzzy Sets and Systems 104, 61–75 (1999)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Mas, M., Monserrat, M., Torrens, J.: Kernel aggregation functions on finite scales, Constructions from their marginals. Fuzzy Sets and Systems 241, 27–40 (2014)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Godo, L., Torra, V.: On aggregation operators for ordinal qualitative information. IEEE Transactions on Fuzzy Systems 8, 143–154 (2000)CrossRefGoogle Scholar
  19. 19.
    Mas, M., Mayor, G., Torrens, J.: t-Operators and uninorms on a finite totally ordered set. International Journal of Intelligent Systems 14, 909–922 (1999)CrossRefMATHGoogle Scholar
  20. 20.
    Yager, R.R.: Aggregation of ordinal information. Fuzzy Optimization and Decision Making 6, 199–219 (2007)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Casasnovas, J., Riera, J.V.: Lattice properties of discrete fuzzy numbers under extended min and max. In: Proceedings of IFSA-EUSFLAT-2009, Lisbon (2009)Google Scholar
  22. 22.
    De Baets, B., Fodor, J.C., Ruiz-Aguilera, D., Torrens, J.: Idempotent uninorms on Finite Ordinal Scales. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 17(1), 1–14 (2009)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Herrera, F., Herrera-Viedma, E., Martínez, L.: A fusion approach for managing multi-granularity linguistic term sets in decision making. Fuzzy Sets and Systems 114, 43–58 (2000)CrossRefMATHGoogle Scholar
  24. 24.
    Alonso, S., Pérez, I.J., Cabrerizo, F.J., Herrera-Viedma, E.: A linguistic consensus model for Web 2.0 communities. Applied Soft Computing 13(1), 149–157 (2013)CrossRefGoogle Scholar
  25. 25.
    Chen, L.H., Lu, H.W.: An approximate approach for ranking fuzzy numbers based on left and right dominance. Computers and Mathematics with Applications 41(12), 1589–1602 (2001)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Herrera, F., Herrera-Viedma, E., Martínez, L.: A fuzzy linguistic methodology to deal with unbalanced linguistic term sets. IEEE Transactions on Fuzzy Systems 16(2), 354–370 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Enrique Herrera-Viedma
    • 1
  • Juan Vicente Riera
    • 2
  • Sebastià Massanet
    • 2
  • Joan Torrens
    • 2
  1. 1.Department of Computer Science and Artificial IntelligenceUniversity of GranadaGranadaSpain
  2. 2.University of Balearic IslandsPalma de MallorcaSpain

Personalised recommendations