An Intelligent System for Computer-Aided Ovarian Tumor Diagnosis

  • Krzysztof Dyczkowski
  • Andrzej Wójtowicz
  • Patryk Żywica
  • Anna Stachowiak
  • Rafał Moszyński
  • Sebastian Szubert
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 323)


This article describes the fundamentals of an intelligent decision support system for the diagnosis of ovarian tumors. The system is designed to support diagnosis by less experienced gynecologists, and to gather data for continuous improvement of the quality of diagnosis. The theoretical basis for the construction of the system is the IF-sets framework, used to aggregate multiple decision-making methods, and simultaneously providing information about positive and negative diagnosis of a given tumor type.


Ovarian Tumor Intelligent System Diagnostic Process Adnexal Mass Adnexal Tumor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ferlay, J., Steliarova-Foucher, E., Lortet-Tieulent, J., Rosso, S., Coebergh, J., Comber, H., Forman, D., Bray, F.: Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. European Journal of Cancer 49(6), 1374–1403 (2013)CrossRefGoogle Scholar
  2. 2.
    Szpurek, D., Moszyński, R., Szubert, S., Sajdak, S.: Urban and rural differences in characteristics of ovarian cancer patients. Annals of Agricultural and Environmental Medicine 20(2), 390–394 (2013)Google Scholar
  3. 3.
    du Bois, A., Rochon, J., Pfisterer, J., Hoskins, W.J.: Variations in institutional infrastructure, physician specialization and experience, and outcome in ovarian cancer: A systematic review. Gynecologic Oncology 112(2), 422–436 (2009)CrossRefGoogle Scholar
  4. 4.
    Timmerman, D., Schwärzler, P., Collins, W., Claerhout, F., Coenen, M., Amant, F., Vergote, I., Bourne, T.: Subjective assessment of adnexal masses with the use of ultrasonography: an analysis of interobserver variability and experience. Ultrasound in Obstetrics & Gynecology 13(1), 11–16 (1999)CrossRefGoogle Scholar
  5. 5.
    DePriest, P., Shenson, D., Fried, A., Hunter, J., Andrews, S., Gallion, H., Pavlik, E., Kryscio, R., et al.: A morphology index based on sonographic findings in ovarian cancer. Gynecologic Oncology 51(1), 7–11 (1993)CrossRefGoogle Scholar
  6. 6.
    Alcázar, J.L., Mercé, L.T., Laparte, C., Jurado, M., López-Garcia, G.: A new scoring system to differentiate benign from malignant adnexal masses. Obstetrical & Gynecological Survey 58(7), 462–463 (2003)CrossRefGoogle Scholar
  7. 7.
    Szpurek, D., Moszyński, R., Ziętkowiak, W., Spaczyński, M., Sajdak, S.: An ultrasonographic morphological index for prediction of ovarian tumor malignancy. European Journal of Gynaecological Oncology 26(1), 51–54 (2005)Google Scholar
  8. 8.
    Moszyński, R.: Evaluation of usefulness of rough set theory in diagnostics of ovarian tumors. Doctoral thesis at the Poznan University of Medical Sciences (2003)Google Scholar
  9. 9.
    Timmerman, D., Testa, A.C., Bourne, T., Ameye, L., Jurkovic, D., Van Holsbeke, C., Paladini, D., Van Calster, B., Vergote, I., Van Huffel, S., et al.: Simple ultrasound-based rules for the diagnosis of ovarian cancer. Ultrasound in Obstetrics & Gynecology 31(6), 681–690 (2008)CrossRefGoogle Scholar
  10. 10.
    Timmerman, D., Testa, A.C., Bourne, T., Ferrazzi, E., Ameye, L., Konstantinovic, M.L., Van Calster, B., Collins, W.P., Vergote, I., Van Huffel, S., et al.: Logistic regression model to distinguish between the benign and malignant adnexal mass before surgery: a multicenter study by the International Ovarian Tumor Analysis Group. Journal of Clinical Oncology 23(34), 8794–8801 (2005)CrossRefGoogle Scholar
  11. 11.
    Moore, R.G., McMeekin, D.S., Brown, A.K., DiSilvestro, P., Miller, M.C., Allard, W.J., Gajewski, W., Kurman, R., Bast Jr., R.C., Skates, S.J.: A novel multiple marker bioassay utilizing HE4 and CA125 for the prediction of ovarian cancer in patients with a pelvic mass. Gynecologic Oncology 112(1), 40–46 (2009)CrossRefGoogle Scholar
  12. 12.
    Tailor, A., Jurkovic, D., Bourne, T.H., Collins, W.P., Campbell, S.: Sonographic prediction of malignancy in adnexal masses using an artificial neural network. BJOG: An International Journal of Obstetrics & Gynaecology 106(1), 21–30 (1999)CrossRefGoogle Scholar
  13. 13.
    Smoleń, A., Czekierdowski, A., Stachowicz, N., Kotarski, J.: Use of multilayer perception artificial neutral networks for the prediction of the probability of malignancy in adnexal tumors. Ginekologia Polska 74(9), 855–862 (2003)Google Scholar
  14. 14.
    Van Calster, B., Timmerman, D., Lu, C., Suykens, J.A., Valentin, L., Van Holsbeke, C., Amant, F., Vergote, I., Van Huffel, S.: Preoperative diagnosis of ovarian tumors using Bayesian kernel-based methods. Ultrasound in Obstetrics & Gynecology 29(5), 496–504 (2007)CrossRefGoogle Scholar
  15. 15.
    Van Calster, B., Timmerman, D., Nabney, I.T., Valentin, L., Testa, A.C., Van Holsbeke, C., Vergote, I., Van Huffel, S.: Using Bayesian neural networks with ARD input selection to detect malignant ovarian masses prior to surgery. Neural Computing and Applications 17(5-6), 489–500 (2008)CrossRefGoogle Scholar
  16. 16.
    Madu, E., Stalbovskaya, V., Hamadicharef, B., Ifeachor, E., Van Huffel, S., Timmerman, D.: Preoperative ovarian cancer diagnosis using neuro-fuzzy approach. In: European Conference on Emergent Aspects on Clinical Data Analysis (2005)Google Scholar
  17. 17.
    Tingulstad, S., Hagen, B., Skjeldestad, F.E., Onsrud, M., Kiserud, T., Halvorsen, T., Nustad, K.: Evaluation of a risk of malignancy index based on serum CA125, ultrasound findings and menopausal status in the pre-operative diagnosis of pelvic masses. BJOG: An International Journal of Obstetrics & Gynaecology 103(8), 826–831 (1996)CrossRefGoogle Scholar
  18. 18.
    Amor, F., Vaccaro, H., Alcázar, J.L., León, M., Craig, J.M., Martinez, J.: Gynecologic imaging reporting and data system a new proposal for classifying adnexal masses on the basis of sonographic findings. Journal of Ultrasound in Medicine 28(3), 285–291 (2009)Google Scholar
  19. 19.
    Timmerman, D., Bourne, T.H., Tailor, A., Collins, W.P., Verrelst, H., Vandenberghe, K., Vergote, I.: A comparison of methods for preoperative discrimination between malignant and benign adnexal masses: the development of a new logistic regression model. American Journal of Obstetrics and Gynecology 181(1), 57–65 (1999)CrossRefGoogle Scholar
  20. 20.
    Valentin, L., Hagen, B., Tingulstad, S., Eik-Nes, S.: Comparison of ’pattern recognition’ and logistic regression models for discrimination between benign and malignant pelvic masses: a prospective cross validation. Ultrasound in Obstetrics & Gynecology 18(4), 357–365 (2001)CrossRefGoogle Scholar
  21. 21.
    Van Holsbeke, C., Van Calster, B., Valentin, L., Testa, A.C., Ferrazzi, E., Dimou, I., Lu, C., Moerman, P., Van Huffel, S., Vergote, I., et al.: External validation of mathematical models to distinguish between benign and malignant adnexal tumors: a multicenter study by the International Ovarian Tumor Analysis Group. Clinical Cancer Research 13(15), 4440–4447 (2007)CrossRefGoogle Scholar
  22. 22.
    Wójtowicz, A., Żywica, P., Szarzyński, K., Moszyński, R., Szubert, S., Dyczkowski, K., Stachowiak, A., Szpurek, D., Wygralak, M.: Dealing with Uncertainty in Ovarian Tumor Diagnosis (to appear, 2014)Google Scholar
  23. 23.
    Stachowiak, A., Żywica, P., Dyczkowski, K., Wójtowicz, A.: An Interval-Valued Fuzzy Classifier Based on an Uncertainty-Aware Similarity Measure. In: Advances in Intelligent Systems and Computing (to appear, 2014)Google Scholar
  24. 24.
    Zadeh, L.A.: Fuzzy logic and approximate reasoning. Synthese 30(3-4), 407–428 (1975)CrossRefzbMATHGoogle Scholar
  25. 25.
    Wygralak, M.: Intelligent Counting Under Information Imprecision. STUDFUZZ, vol. 292. Springer, Heidelberg (2013)zbMATHGoogle Scholar
  26. 26.
    Atanassov, K.T.: Intuitionistic fuzzy sets. STUDFUZZ, vol. 35. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  27. 27.
    De, S.K., Biswas, R., Roy, A.R.: An application of intuitionistic fuzzy sets in medical diagnosis. Fuzzy Sets and Systems 117(2), 209–213 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Szmidt, E., Kacprzyk, J.: An intuitionistic fuzzy set based approach to intelligent data analysis: an application to medical diagnosis. In: Abraham, A., Jain, L.C., Kacprzyk, J. (eds.) Recent Advances in Intelligent Paradigms and Applications. STUDFUZZ, vol. 113, pp. 57–70. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  29. 29.
    Stachowiak, A., Dyczkowski, K.: A similarity measure with uncertainty for incompletely known fuzzy sets. In: 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), pp. 390–394. IEEE (2013)Google Scholar
  30. 30.
    Kruse, R., Borgelt, C., Klawonn, F., Moewes, C., Steinbrecher, M., Held, P.: Computational Intelligence: A Methodological Introduction. Springer (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Krzysztof Dyczkowski
    • 1
  • Andrzej Wójtowicz
    • 1
  • Patryk Żywica
    • 1
  • Anna Stachowiak
    • 1
  • Rafał Moszyński
    • 2
  • Sebastian Szubert
    • 2
  1. 1.Faculty of Mathematics and Computer ScienceAdam Mickiewicz UniversityPoznańPoland
  2. 2.Division of Gynecological SurgeryPoznan University of Medical SciencesPoznańPoland

Personalised recommendations