Empirical Identification of Non-stationary Dynamics in Time Series of Recordings

  • Emili Balaguer-Ballester
  • Alejandro Tabas-Diaz
  • Marcin Budka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8779)


Non-stationarity time series are very common in physical, biological and in real-world systems in general, ranging from geophysics, econometrics or electroencephalography to logistics. Identifying, detecting and adapting learning algorithms to non-stationary environments is a fundamental task in many data mining scenarios; however it is often a major challenge for current methodologies. Data analysis in the context of time-varying statistical moments is a very active research direction in machine learning and in computational statistics; but theoretical insights into latent causes of non-stationarity in empirical data are very scarce. In this study, we evaluate the capacity of the trajectory classification error statistic in order to detect a significant variation in the underlying dynamics of data collected in multiple stages. We analysed qualitatively the conditions leading to observable changes in non-stationary data generated by Duffing non-linear oscillators; which are ubiquitous models of complex classification problems. Analyses are further benchmarked in a dataset consisting of atmospheric pollutants time series.


Non-stationarity non-autonomous dynamics phase space reconstruction high dimensional spaces Duffing oscillator trial-to-trial variability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balaguer-Ballester, E., Tabas-Diaz, A., Budka, M.: Can we identify non-stationary dynamics of trial-to-trial variability? PLoS ONE 9, e95648 (2014)CrossRefGoogle Scholar
  2. 2.
    Balaguer-Ballester, E., Camps-Valls, G., Carrasco-Rodriguez, J.L., Soria-Olivas, E., del Valle-Tascon, S.: Effective one-day ahead prediction of hourly surface ozone concentrations in Eastern Spain using linear models and neural networks. Ecological Modelling 156, 27–41 (2002)CrossRefGoogle Scholar
  3. 3.
    Balaguer-Ballester, E., Lapish, C., Seamans, J., Durstewitz, D.: Attracting dynamics of frontal cortex ensembles during memory guided decision making. PLoS Computational Biology 7, e1002057 (2011)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Beck, J.M., Ma, W.J., Pitkow, X., Latham, P.E., Pouget, A.: Not noisy, just wrong: The role of suboptimal inference in behavioral variability. Neuron 74, 33–39 (2012)CrossRefGoogle Scholar
  5. 5.
    Blythe, D.A.J., von Bunau, P., Meinecke, F.C., Robert-Muller, K.: Feature extraction for change-point detection using stationary subspace analysis. IEEE Trans. Neural Networks 23, 631–643 (2012)Google Scholar
  6. 6.
    Bouchachia, A.: Incremental learning with multi-level adaptation. Neurocomputing 74, 1785–1799 (2011)CrossRefGoogle Scholar
  7. 7.
    Chen, J.S., Hu, N.J.: A frequency domain test for detecting nonstationary time series. Computational Statistics and Data Analysis (in press, 2014)Google Scholar
  8. 8.
    Du, J., Cui, M.: Solving the forced duffing equation with integral boundary conditions in the reproducing kernel space. International Journal of Computer Mathematics 87, 2088–2100 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Durstewitz, D., Balaguer-Ballester, E.: Statistical approaches for reconstructing neuro-cognitive dynamics from high-dimensional neural recordings. Neuroforum 1, 89–98 (2010)CrossRefGoogle Scholar
  10. 10.
    Feng, Z., Chen, G., Hsu, S.: A qualitative study of the damped duffing equation and applications. American Institute of Mathematical Sciences 6, 1097–1112 (2006)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Gomez-Sanchis, J., Martin-Guerrero, J.O., Soria-Olivas, E., Vila-Frances, J., Carrasco, J.L., del Valle-Tascon, S.: Neural networks for analysing the relevance of input variables in the prediction of tropospheric ozone concentration. Atmospheric Environment 40, 6173–6180 (2006)CrossRefGoogle Scholar
  12. 12.
    Haraa, S., Kawaharaa, Y., Washioa, T., von Bnau, P., Tokunagac, T., Yumotod, K.: Separation of stationary and non-stationary sources with a generalized eigenvalue problem. Neural Networks 33, 7–20 (2012)CrossRefGoogle Scholar
  13. 13.
    Kuncheva, L.I., Rodriguez, J.J.: Interval feature extraction for classification of event-related potentials (erp) in eeg data analysis. Progress in Artificial Intelligence 2, 65–72 (2012)CrossRefGoogle Scholar
  14. 14.
    Masquelier, T.: Neural variability, or lack thereof. Frontiers in Comput. Neurosci. 7, 1–7 (2013)CrossRefGoogle Scholar
  15. 15.
    Nason, G.: A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. J. R. Statist. Soc. B 75, 879–904 (2013)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Priestley, M.B., Subba, T.: A test for non-stationarity of time-series. J. R. Statist. Soc. B 31, 140–149 (1969)zbMATHGoogle Scholar
  17. 17.
    Sauer, T., Yorke, J., Casdagli, M.: Embedology. J. Stat. Phys. 65, 579–616 (1992)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Sayed-Mouchaweh, M., Lughofer, E. (eds.): Learning in Non-Stationary Environments. Springer (2012)Google Scholar
  19. 19.
    Scholkopf, B., Smola, A.J.: Learning with kernels. MIT Press (2002)Google Scholar
  20. 20.
    von Bunau, P., Meinecke, F.C., Kiraly, F.J., Robert-Muller, K.: Finding stationary subspaces in multivariate time series. Phys. Rev. Lett. 103, 214101 (2009)CrossRefGoogle Scholar
  21. 21.
    Wiggins, S.: Introduction to applied nonlinear dynamical systems and chaos. Springer (2013)Google Scholar
  22. 22.
    Zliobaite, I., Bifet, A., Pfahringer, B., Holmes, G.: Active learning with drifting streaming data. IEEE Transactions on Neural Networks and Learning Systems (2013) (in press)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Emili Balaguer-Ballester
    • 2
  • Alejandro Tabas-Diaz
    • 1
  • Marcin Budka
    • 1
  1. 1.Faculty of Science and TechnologyBournemouth UniversityPooleUK
  2. 2.Bernstein Center for Computational Neuroscience Heidelberg-MannheimUniversity of HeidelbergUK

Personalised recommendations