Towards a Better Understanding of the Local Attractor in Particle Swarm Optimization: Speed and Solution Quality

  • Vanessa Lange
  • Manuel Schmitt
  • Rolf Wanka
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8779)


Particle Swarm Optimization (PSO) is a popular nature-inspired meta-heuristic for solving continuous optimization problems. Although this technique is widely used, the understanding of the mechanisms that make swarms so successful is still limited. We present the first substantial experimental investigation of the influence of the local attractor on the quality of exploration and exploitation. We compare in detail classical PSO with the social-only variant where local attractors are ignored. To measure the exploration capabilities, we determine how frequently both variants return results in the neighborhood of the global optimum. We measure the quality of exploitation by considering only function values from runs that reached a search point sufficiently close to the global optimum and then comparing in how many digits such values still deviate from the global minimum value. It turns out that the local attractor significantly improves the exploration, but sometimes reduces the quality of the exploitation. The effects mentioned can also be observed by measuring the potential of the swarm.


Particle Swarm Optimiza Global Optimum Particle Swarm Local Optimum Global Attractor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van den Bergh, F., Engelbrecht, A.P.: A new locally convergent particle swarm optimiser. In: Proc. IEEE Int. Conf. on Systems, Man and Cybernetics (SMC), vol. 3, pp. 94–99 (2002), doi:10.1109/ICSMC.2002.1176018Google Scholar
  2. 2.
    Clerc, M., Kennedy, J.: The particle swarm – explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation 6, 58–73 (2002), doi:10.1109/4235.985692CrossRefGoogle Scholar
  3. 3.
    Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proc. 6th International Symposium on Micro Machine and Human Science, pp. 39–43 (1995), doi:10.1109/MHS.1995.494215Google Scholar
  4. 4.
    Gnezdilov, A., Wittmann, S., Helwig, S., Kókai, G.: Acceleration of a relative positioning framework. International Journal of Computational Intelligence Research 5, 130–140 (2009), doi:10.5019/j.ijcir.2009.176CrossRefGoogle Scholar
  5. 5.
    Helwig, S.: Particle Swarms for Constrained Optimization. Ph.D. thesis, Department of Computer Science, University of Erlangen-Nuremberg, Germany (2010), urn:nbn:de:bvb:29-opus-19334Google Scholar
  6. 6.
    Jiang, M., Luo, Y.P., Yang, S.Y.: Particle swarm optimization – stochastic trajectory analysis and parameter selection. In: Chan, F.T.S., Tiwari, M.K. (eds.) Swarm Intelligence – Focus on Ant and Particle Swarm Optimization, pp. 179–198 (2007),, corrected version of [7]
  7. 7.
    Jiang, M., Luo, Y.P., Yang, S.Y.: Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm. Information Processing Letters 102, 8–16 (2007), doi:10.1016/j.ipl.2006.10.005, corrected by [6]Google Scholar
  8. 8.
    Kennedy, J.: The Particle Swarm: Social Adaptation of Knowledge. In: Proc. IEEE International Conference on Evolutionary Computation (ICEC), pp. 303–308 (1997), doi:10.1109/ICEC.1997.592326Google Scholar
  9. 9.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proc. IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995), doi:10.1109/ICNN.1995.488968Google Scholar
  10. 10.
    Lange, V., Schmitt, M., Wanka, R.: Towards a better understanding of the local attractor in particle swarm optimization: Speed and solution quality (2014),arXiv:1406.1691Google Scholar
  11. 11.
    Lehre, P.K., Witt, C.: Finite first hitting time versus stochastic convergence in particle swarm optimisation (2011), arXiv:1105.5540Google Scholar
  12. 12.
    Onwunalu, J.E., Durlofsky, L.J.: Application of a particle swarm optimization algorithm for determining optimum well location and type. Computational Geosciences 14, 183–198 (2010), doi:10.1007/s10596-009-9142-1CrossRefzbMATHGoogle Scholar
  13. 13.
    Panigrahi, B.K., Shi, Y., Lim, M.H. (eds.): Handbook of Swarm Intelligence — Concepts, Principles and Applications. Springer (2011), doi:10.1007/978-3-642-17390-5Google Scholar
  14. 14.
    Pedersen, M.E.H., Chipperfield, A.J.: Simplifying particle swarm optimization. Applied Soft Computing 10(2), 618–628 (2010), doi:10.1016/j.asoc.2009.08.029CrossRefGoogle Scholar
  15. 15.
    Ramanathan, K., Periasamy, V.M., Pushpavanam, M., Natarajan, U.: Particle swarm optimisation of hardness in nickel diamond electro composites. Archives of Computational Materials Science and Surface Engineering 1, 232–236 (2009), Google Scholar
  16. 16.
    Schmitt, M., Wanka, R.: Particle swarm optimization almost surely finds local optima. In: Proc. 15th Genetic and Evolutionary Computation Conference (GECCO), pp. 1629–1636 (2013), doi:10.1145/2463372.2463563Google Scholar
  17. 17.
    Shang, Y.W., Qiu, Y.H.: A note on the extended Rosenbrock function. Evolutionary Computation 14(1), 119–126 (2006), doi:10.1162/106365606776022733CrossRefGoogle Scholar
  18. 18.
    Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A., Tiwari, S.: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Tech. rep., KanGAL Report Number 2005005 (Kanpur Genetic Algorithms Laboratory, IIT Kanpur) (2005)Google Scholar
  19. 19.
    Wachowiak, M.P., Smolíková, R., Zheng, Y., Zurada, J.M., Elmaghraby, A.S.: An approach to multimodal biomedical image registration utilizing particle swarm optimization. IEEE Transactions on Evolutionary Computation 8, 289–301 (2004), doi:10.1109/TEVC.2004.826068CrossRefGoogle Scholar
  20. 20.
    Zhang, W., Xie, X.F., Bi, D.C.: Handling boundary constraints for numerical optimization by particle swarm flying in periodic search space. In: Proc. IEEE Congress on Evolutionary Computation (CEC), vol. 2, pp. 2307–2311 (2004), doi:10.1109/CEC.2004.1331185Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Vanessa Lange
    • 1
  • Manuel Schmitt
    • 1
  • Rolf Wanka
    • 1
  1. 1.Department of Computer ScienceUniversity of Erlangen-NurembergGermany

Personalised recommendations