Parallel and Scalable Computation and Spatial Dynamics with DNA-Based Chemical Reaction Networks on a Surface

  • Lulu Qian
  • Erik Winfree
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8727)


We propose a theoretical framework that uses a novel DNA strand displacement mechanism to implement abstract chemical reaction networks (CRNs) on the surface of a DNA nanostructure, and show that surface CRNs can perform efficient algorithmic computation and create complex spatial dynamics. We argue that programming molecular behaviors with surface CRNs is systematic, parallel and scalable.


Cellular Automaton Turing Machine Transition Rule Logic Circuit Strand Displacement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beaver, D.: A universal molecular computer. DNA Based Computers, DIMACS 27, 29–36 (1996)Google Scholar
  2. 2.
    Bennett, C.H.: The thermodynamics of computation – a review. International Journal of Theoretical Physics 21, 905–940 (1982)CrossRefGoogle Scholar
  3. 3.
    Bennett, C.H.: Logical reversibility of computation. IBM Journal of Research and Development 17, 525–532 (1973)CrossRefzbMATHGoogle Scholar
  4. 4.
    Boon, J.P., Dab, D., Kapral, R., Lawniczak, A.: Lattice gas automata for reactive systems. Physics Reports 273, 55–147 (1996)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Chandran, H., Gopalkrishnan, N., Phillips, A., Reif, J.: Localized hybridization circuits. In: Cardelli, L., Shih, W. (eds.) DNA 17. LNCS, vol. 6937, pp. 64–83. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Chen, X.: Expanding the rule set of DNA circuitry with associative toehold activation. Journal of the American Chemical Society 134, 263–271 (2011)CrossRefGoogle Scholar
  7. 7.
    Chen, Y.J., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D., Seelig, G.: Programmable chemical controllers made from DNA. Nature Nanotechnology 8, 755–762 (2013)CrossRefGoogle Scholar
  8. 8.
    Cook, M.: Universality in elementary cellular automata. Complex Systems 15, 1–40 (2004)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Dabby, N.L.: Synthetic molecular machines for active self-assembly: prototype algorithms, designs, and experimental study. Ph.D. thesis, California Institute of Technology (2013)Google Scholar
  10. 10.
    Dannenberg, F., Kwiatkowska, M., Thachuk, C., Turberfield, A.J.: DNA walker circuits: Computational potential, design, and verification. In: Soloveichik, D., Yurke, B. (eds.) DNA 2013. LNCS, vol. 8141, pp. 31–45. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Dirks, R.M., Pierce, N.A.: Triggered amplification by hybridization chain reaction. Proceedings of the National Academy of Sciences 101, 15275–15278 (2004)CrossRefGoogle Scholar
  12. 12.
    Douglas, S.M., Bachelet, I., Church, G.M.: A logic-gated nanorobot for targeted transport of molecular payloads. Science 335, 831–834 (2012)CrossRefGoogle Scholar
  13. 13.
    Ermentrout, G.B., Edelstein-Keshet, L.: Cellular automata approaches to biological modeling. Journal of Theoretical Biology 160, 97–133 (1993)CrossRefGoogle Scholar
  14. 14.
    Gács, P.: Reliable cellular automata with self-organization. Journal of Statistical Physics 103, 45–267 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Genot, A.J., Bath, J., Turberfield, A.J.: Combinatorial displacement of DNA strands: application to matrix multiplication and weighted sums. Angewandte Chemie International Edition 52, 1189–1192 (2013)CrossRefGoogle Scholar
  16. 16.
    Genot, A.J., Zhang, D.Y., Bath, J., Turberfield, A.J.: Remote toehold: a mechanism for flexible control of DNA hybridization kinetics. Journal of the American Chemical Society 133, 2177–2182 (2011)CrossRefGoogle Scholar
  17. 17.
    Greenberg, J.M., Hastings, S.: Spatial patterns for discrete models of diffusion in excitable media. SIAM Journal on Applied Mathematics 34(3), 515–523 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Gu, H., Chao, J., Xiao, S.J., Seeman, N.C.: A proximity-based programmable DNA nanoscale assembly line. Nature 465, 202–205 (2010)CrossRefGoogle Scholar
  19. 19.
    Han, J., Jonker, P.: A defect-and fault-tolerant architecture for nanocomputers. Nanotechnology 14, 224 (2003)CrossRefGoogle Scholar
  20. 20.
    He, Y., Liu, D.R.: Autonomous multistep organic synthesis in a single isothermal solution mediated by a DNA walker. Nature Nanotechnology 5, 778–782 (2010)CrossRefGoogle Scholar
  21. 21.
    Jahnke, W., Winfree, A.T.: A survey of spiral-wave behaviors in the Oregonator model. International Journal of Bifurcation and Chaos 1, 445–466 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Jungmann, R., Steinhauer, C., Scheible, M., Kuzyk, A., Tinnefeld, P., Simmel, F.C.: Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. Nano Letters 10, 4756–4761 (2010)CrossRefGoogle Scholar
  23. 23.
    Kari, J.: Theory of cellular automata: A survey. Theoretical Computer Science 334, 3–33 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Lakin, M.R., Phillips, A., Stefanovic, D.: Modular verification of DNA strand displacement networks via serializability analysis. In: Soloveichik, D., Yurke, B. (eds.) DNA 19. LNCS, vol. 8141, pp. 133–146. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  25. 25.
    Lee, J., Adachi, S., Peper, F., Mashiko, S.: Delay-insensitive computation in asynchronous cellular automata. Journal of Computer and System Sciences 70, 201–220 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Liu, W., Zhong, H., Wang, R., Seeman, N.C.: Crystalline two-dimensional DNA-origami arrays. Angewandte Chemie 123, 278–281 (2011)CrossRefGoogle Scholar
  27. 27.
    Muscat, R.A., Bath, J., Turberfield, A.J.: A programmable molecular robot. Nano Letters 11, 982–987 (2011)CrossRefGoogle Scholar
  28. 28.
    Muscat, R.A., Strauss, K., Ceze, L., Seelig, G.: DNA-based molecular architecture with spatially localized components. In: Proceedings of the 40th Annual International Symposium on Computer Architecture (ISCA), pp. 177–188 (2013)Google Scholar
  29. 29.
    Phillips, A., Cardelli, L.: A programming language for composable DNA circuits. Journal of The Royal Society Interface 6, S419–S436 (2009)Google Scholar
  30. 30.
    Qian, L., Soloveichik, D., Winfree, E.: Efficient turing-universal computation with DNA polymers. In: Sakakibara, Y., Mi, Y. (eds.) DNA 16. LNCS, vol. 6518, pp. 123–140. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  31. 31.
    Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332, 1196–1201 (2011)CrossRefGoogle Scholar
  32. 32.
    Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006)CrossRefGoogle Scholar
  33. 33.
    Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biology 2, e424 (2004)Google Scholar
  34. 34.
    Rothemund, P.W.K.: A DNA and restriction enzyme implementation of Turing machines. DNA Based Computers, DIMACS 27, 75–119 (1996)MathSciNetGoogle Scholar
  35. 35.
    Smith, W.D.: DNA computers in vitro and in vivo. DNA Based Computers, DIMACS 27, 121–185 (1996)Google Scholar
  36. 36.
    Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proceedings of the National Academy of Sciences 107, 5393–5398 (2010)CrossRefGoogle Scholar
  37. 37.
    Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochastic chemical reaction networks. Natural Computing 7(4), 615–633 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Tan, S.J., Campolongo, M.J., Luo, D., Cheng, W.: Building plasmonic nanostructures with DNA. Nature Nanotechnology 6, 268–276 (2011)CrossRefGoogle Scholar
  39. 39.
    Toffoli, T., Margolus, N.: Cellular automata machines: a new environment for modeling. MIT Press (1987)Google Scholar
  40. 40.
    Venkataraman, S., Dirks, R.M., Rothemund, P.W.K., Winfree, E., Pierce, N.A.: An autonomous polymerization motor powered by DNA hybridization. Nature Nanotechnology 2, 490–494 (2007)CrossRefGoogle Scholar
  41. 41.
    Von Neumann, J.: Probabilistic logics and the synthesis of reliable organisms from unreliable components. Automata Studies 34, 43–98 (1956)Google Scholar
  42. 42.
    Wang, W.: An asynchronous two-dimensional self-correcting cellular automaton. In: Proceedings of 32nd Annual Symposium on Foundations of Computer Science, pp. 278–285. IEEE (1991)Google Scholar
  43. 43.
    Yin, P., Sahu, S., Turberfield, A.J., Reif, J.H.: Design of autonomous DNA cellular automata. In: Carbone, A., Pierce, N.A. (eds.) DNA 11. LNCS, vol. 3892, pp. 399–416. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  44. 44.
    Yin, P., Turberfield, A.J., Sahu, S., Reif, J.H.: Design of an autonomous DNA nanomechanical device capable of universal computation and universal translational motion. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 10. LNCS, vol. 3384, pp. 426–444. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  45. 45.
    Yurke, B., Turberfield, A.J., Mills, A.P., Simmel, F.C., Neumann, J.L.: A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000)CrossRefGoogle Scholar
  46. 46.
    Zhang, D.Y., Winfree, E.: Control of DNA strand displacement kinetics using toehold exchange. Journal of the American Chemical Society 131, 17303–17314 (2009)CrossRefGoogle Scholar
  47. 47.
    Zhang, D.Y., Chen, S.X., Yin, P.: Optimizing the specificity of nucleic acid hybridization. Nature Chemistry 4, 208–214 (2012)CrossRefGoogle Scholar
  48. 48.
    Zhang, D.Y., Seelig, G.: Dynamic DNA nanotechnology using strand-displacement reactions. Nature Chemistry 3, 103–113 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Lulu Qian
    • 1
    • 2
  • Erik Winfree
    • 1
    • 2
    • 3
  1. 1.BioengineeringCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Computer ScienceCalifornia Institute of TechnologyPasadenaUSA
  3. 3.Computation and Neural SystemsCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations