Output Stability and Semilinear Sets in Chemical Reaction Networks and Deciders

  • Robert Brijder
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8727)


We study the set of output stable configurations of chemical reaction deciders (CRDs). It turns out that CRDs with only bimolecular reactions (which are almost equivalent to population protocols) have a special structure that allows for an algorithm to efficiently calculate the (finite) set of minimal output stable configurations. As a consequence, a relatively large sequence of configurations may be efficiently checked for output stability.

We also provide a number of observations regarding the semilinearity result of Angluin et al. [Distrib. Comput., 2007] from the context of population protocols (which is a central result for output stable CRDs). In particular, we observe that the computation-friendly class of totally stable CRDs has equal expressive power as the larger class of output stable CRDs.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distributed Computing 18(4), 235–253 (2006)CrossRefMATHGoogle Scholar
  2. 2.
    Angluin, D., Aspnes, J., Eisenstat, D.: Stably computable predicates are semilinear. In: Ruppert, E., Malkhi, D. (eds.) Proceedings of the 25th Annual ACM Symposium on Principles of Distributed Computing (PODC 2006), pp. 292–299. ACM (2006)Google Scholar
  3. 3.
    Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of population protocols. Distributed Computing 20(4), 279–304 (2007)CrossRefMATHGoogle Scholar
  4. 4.
    Aspnes, J., Ruppert, E.: An introduction to population protocols. Bulletin of the EATCS 93, 98–117 (2007)MATHMathSciNetGoogle Scholar
  5. 5.
    Chen, H.-L., Doty, D., Soloveichik, D.: Deterministic function computation with chemical reaction networks. In: Stefanovic, D., Turberfield, A. (eds.) DNA 18. LNCS, vol. 7433, pp. 25–42. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Chen, H.-L., Doty, D., Soloveichik, D.: Rate-independent computation in continuous chemical reaction networks. In: Naor, M. (ed.) Innovations in Theoretical Computer Science (ITCS 2014), pp. 313–326. ACM (2014)Google Scholar
  7. 7.
    Cook, M., Soloveichik, D., Winfree, E., Bruck, J.: Programmability of chemical reaction networks. In: Condon, A., Harel, D., Kok, J.N., Salomaa, A., Winfree, E. (eds.) Algorithmic Bioprocesses. Natural Computing Series, pp. 543–584. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors. American Journal of Mathematics 35, 413–422 (1913)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Doty, D.: Timing in chemical reaction networks. In: Chekuri, C. (ed.) Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2014), pp. 772–784. SIAM (2014)Google Scholar
  10. 10.
    Doty, D., Hajiaghayi, M.: Leaderless deterministic chemical reaction networks. In: Soloveichik, D., Yurke, B. (eds.) DNA 2013. LNCS, vol. 8141, pp. 46–60. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Karp, R.M., Miller, R.E.: Parallel program schemata. Journal of Computer and System Sciences 3(2), 147–195 (1969)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Leroux, J.: Vector addition systems reachability problem (a simpler solution). In: Voronkov, A. (ed.) Proceedings of the Alan Turing Centenary Conference (Turing-100). EPiC Series, vol. 10, pp. 214–228 (2012)Google Scholar
  13. 13.
    Mayr, E.W.: An algorithm for the general Petri net reachability problem. In: Proceedings of the 13th Annual ACM Symposium on Theory of Computing (STOC 1981), pp. 238–246. ACM, New York (1981)Google Scholar
  14. 14.
    Peterson, J.L.: Petri nets. ACM Computing Surveys 9(3), 223–252 (1977)CrossRefMATHGoogle Scholar
  15. 15.
    Plotkin, G.D.: A calculus of chemical systems. In: Tannen, V., Wong, L., Libkin, L., Fan, W., Tan, W.-C., Fourman, M. (eds.) Buneman Festschrift 2013. LNCS, vol. 8000, pp. 445–465. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochastic chemical reaction networks. Natural Computing 7(4), 615–633 (2008)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proceedings of the National Academy of Sciences 107(12), 5393–5398 (2010)CrossRefGoogle Scholar
  18. 18.
    Stanley, R.P.: Enumerative Combinatorics, 2nd edn. Cambridge Studies in Advanced Mathematics, vol. 1. Cambridge University Press (2011)Google Scholar
  19. 19.
    Willard, D.E.: New data structures for orthogonal range queries. SIAM Journal on Computing 14(1), 232–253 (1985)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Yamasaki, H.: On weak persistency of Petri nets. Information Processing Letters 13(3), 94–97 (1981)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Robert Brijder
    • 1
  1. 1.Hasselt University and Transnational University of LimburgBelgium

Personalised recommendations