Probability 1 Computation with Chemical Reaction Networks

  • Rachel Cummings
  • David Doty
  • David Soloveichik
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8727)

Abstract

The computational power of stochastic chemical reaction networks (CRNs) varies significantly with the output convention and whether or not error is permitted. Focusing on probability 1 computation, we demonstrate a striking difference between stable computation that converges to a state where the output cannot change, and the notion of limit-stable computation where the output eventually stops changing with probability 1. While stable computation is known to be restricted to semilinear predicates (essentially piecewise linear), we show that limitstable computation encompasses the set of predicates in \(\Delta^0_2\) in the arithmetical hierarchy (a superset of Turing-computable). In finite time, our construction achieves an error-correction scheme for Turing universal computation. This work refines our understanding of the tradeoffs between error and computational power in CRNs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angluin, D., Aspnes, J., Eisenstat, D.: Stably computable predicates are semilinear. In: PODC 2006: Proceedings of the Twenty-Fifth Annual ACM Symposium on Principles of Distributed Computing, pp. 292–299. ACM Press, New York (2006)Google Scholar
  2. 2.
    Aspnes, J., Ruppert, E.: An introduction to population protocols. Bulletin of the European Association for Theoretical Computer Science 93, 98–117 (2007)MATHMathSciNetGoogle Scholar
  3. 3.
    Brijder, R.: Output stability and semilinear sets in chemical reaction networks and deciders. In: Murata, S., Kobayashi, S. (eds.) DNA 2014. LNCS, vol. 8727, Springer, Heidelberg (2014)Google Scholar
  4. 4.
    Cardelli, L.: Strand algebras for DNA computing. Natural Computing 10(1), 407–428 (2011)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Chen, H.-L., Doty, D., Soloveichik, D.: Deterministic function computation with chemical reaction networks. Natural Computing (2013) (to appear), Preliminary version appeared in Stefanovic, D., Turberfield, A. (eds.) DNA 18. LNCS, vol. 7433, pp. 25–42. Springer, Heidelberg (2012)Google Scholar
  6. 6.
    Chen, Y.-J., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D., Seelig, G.: Programmable chemical controllers made from DNA. Nature Nanotechnology 8(10), 755–762 (2013)CrossRefGoogle Scholar
  7. 7.
    Cook, M., Soloveichik, D., Winfree, E., Bruck, J.: Programmability of chemical reaction networks. In: Condon, A., Harel, D., Kok, J.N., Salomaa, A., Winfree, E. (eds.) Algorithmic Bioprocesses, pp. 543–584. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 1. Wiley (January 1968)Google Scholar
  9. 9.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  10. 10.
    Karp, R.M., Miller, R.E.: Parallel program schemata. Journal of Computer and System Sciences 3(2), 147–195 (1969)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Petri, C.A.: Communication with automata. Technical report, DTIC Document (1966)Google Scholar
  12. 12.
    Rogers Jr., H.: Theory of Recursive Functions and Effective Computability. McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Company, New York (1967)MATHGoogle Scholar
  13. 13.
    Soare, R.I.: Interactive computing and relativized computability. In: Copeland, B.J., Posy, C.J., Shagrir, O. (eds.) Computability: Turing, Gödel, Church, and Beyond, pp. 203–260. MIT Press, Cambridge (2013)Google Scholar
  14. 14.
    Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochastic chemical reaction networks. Natural Computing 7(4), 615–633 (2008)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proceedings of the National Academy of Sciences 107(12), 5393 (2010), Preliminary version appeared in Goel, A., Simmel, F.C., Sosík, P. (eds.) DNA 14. LNCS, vol. 5347, pp. 57–69. Springer, Heidelberg (2009)Google Scholar
  16. 16.
    Volterra, V.: Variazioni e fluttuazioni del numero dindividui in specie animali conviventi. Mem. Acad. Lincei Roma 2, 31–113 (1926)Google Scholar
  17. 17.
    Zavattaro, G., Cardelli, L.: Termination problems in chemical kinetics. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 477–491. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Rachel Cummings
    • 1
  • David Doty
    • 2
  • David Soloveichik
    • 3
  1. 1.Northwestern UniversityEvanstonUSA
  2. 2.California Institute of TechnologyPasadenaUSA
  3. 3.University of CaliforniaSan FranciscoUSA

Personalised recommendations