SciRecSys: A Recommendation System for Scientific Publication by Discovering Keyword Relationships

  • Vu Le Anh
  • Vo Hoang Hai
  • Hung Nghiep Tran
  • Jason J. Jung
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8733)

Abstract

In this work, we propose a new approach for discovering various relationships among keywords over the scientific publications based on a Markov Chain model. It is an important problem since keywords are the basic elements for representing abstract objects such as documents, user profiles, topics and many things else. Our model is very effective since it combines four important factors in scientific publications: content, publicity, impact and randomness. Particularly, a recommendation system (called SciRecSys) has been presented to support users to efficiently find out relevant articles.

Keywords

Keyword ranking Keyword similarity Keyword inference Scientific Recommendation System Bibliographical corpus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Le Anh, V., Vo Hoang, H., Le Trung, K., Le Trung, H., Jung, J.J.: A general model for mutual ranking systems. In: Nguyen, N.T., Attachoo, B., Trawiński, B., Somboonviwat, K. (eds.) ACIIDS 2014, Part I. LNCS, vol. 8397, pp. 211–220. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  2. 2.
    Bollegala, D., Matsuo, Y., Ishizuka, M.: Measuring semantic similarity between words using web search engines. In: Williamson, C.L., Zurko, M.E., Patel-Schneider, P.F., Shenoy, P.J. (eds.) Proceedings of the 16th International Conference on World Wide Web (WWW 2007), Banff, Alberta, Canada, May 8-12, pp. 757–766. ACM (2007)Google Scholar
  3. 3.
    Cha, S.H.: Comprehensive survey on distance/similarity measures between probability density functions. International Journal of Mathematical Models and Methods in Applied Sciences 1(4), 300–307 (2007)MathSciNetGoogle Scholar
  4. 4.
    Dagan, I., Lee, L., Pereira, F.C.N.: Similarity-based models of word cooccurrence probabilities. Machine Learning 34(1-3), 43–69 (1999)CrossRefMATHGoogle Scholar
  5. 5.
    Fouss, F., Pirotte, A., Renders, J.M., Saerens, M.: Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation. IEEE Transactions on Knowledge and Data Engineering 19(3), 355–369 (2007)CrossRefGoogle Scholar
  6. 6.
    Huang, A.: Similarity measures for text document clustering. In: Proceedings of 6th In New Zealand Computer Science Research Student Conference, Christchurch, New Zealand, pp. 49–56 (2008)Google Scholar
  7. 7.
    Keener, J.P.: The perron-frobenius theorem and the ranking of football teams. SIAM Review 35(1), 80–93 (1993)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Kien, L.T., Hieu, L.T., Hung, T.L., Vu, L.A.: Mpagerank: The stability of web graph. Vietnam Journal of Mathematics 37(4), 475–489 (2009)MATHMathSciNetGoogle Scholar
  9. 9.
    Lops, P., de Gemmis, M., Semeraro, G.: Content-based recommender systems: State of the art and trends. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P. (eds.) Recommender Systems Handbook. ch. 3, pp. 73–105. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Sánchez, D., Batet, M., Isern, D., Valls, A.: Ontology-based semantic similarity: A new feature-based approach. Expert Systems with Applications 39(9), 7718–7728 (2012)CrossRefGoogle Scholar
  11. 11.
    Schickel-Zuber, V., Faltings, B.: Oss: A semantic similarity function based on hierarchical ontologies. In: Veloso, M.M. (ed.) Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI 2007), Hyderabad, India, January 6-12, pp. 551–556 (2007)Google Scholar
  12. 12.
    Singthongchai, J., Niwattanakul, S.: A method for measuring keywords similarity by applying jaccard’s, n-gram and vector space. Lecture Notes on Information Theory 1(4), 159–164 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Vu Le Anh
    • 1
    • 2
  • Vo Hoang Hai
    • 3
  • Hung Nghiep Tran
    • 4
  • Jason J. Jung
    • 5
  1. 1.Nguyen Tat Thanh UniversityHo Chi Minh cityVietnam
  2. 2.Big IoT BK Project TeamYeungnam UniversityGyeongsanKorea
  3. 3.Information Technology CollegeHo Chi Minh cityVietnam
  4. 4.University of Information TechnologyHo Chi Minh cityVietnam
  5. 5.Chung-Ang UniversitySeoulKorea

Personalised recommendations