Structural Changes of GPI Anchor After Its Attachment to Proteins: Functional Significance

  • Taroh KinoshitaEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 842)


One hundred and fifty or more of human proteins are anchored to the outer leaflet of plasma membrane by a glycolipid, termed glycosylphosphatidylinositol (GPI). While GPI-anchored proteins (GPI-APs) have wide range of functions, they share two unique characteristics due to the common membrane-anchors. One is that GPI-APs are mainly associated with membrane microdomains so called membrane rafts. Recent reports demonstrated that GPI-APs exist as homodimers and that homodimerization is important for their raft association. Another characteristic of GPI-APs is release from the cell surface after cleavage by GPI-cleaving enzymes. Preassembled GPI is transferred en bloc by GPI transamidase to the C-terminus of proteins having a C-terminal GPI-attachment signal peptide. A unique feature of GPI-anchor is that GPI structure is dynamically modified during transport to the cell surface. Structural remodeling of lipid and glycan moieties in the endoplasmic reticulum is critical for efficient recruitment of GPI-APs into ER-exit site and association with their cargo receptors. Fatty acid remodeling of GPI in the Golgi is important for homodimerization and raft association. These structure–function relationships will be discussed.


Chinese Hamster Ovary Cell Intellectual Disability Hypomorphic Mutation Diacyl Glycerol Cargo Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ashida H, Hong Y, Murakami Y, Shishioh N, Sugimoto N, Kim YU, Maeda Y, Kinoshita T (2005) Mammalian PIG-X and yeast Pbn1p are the essential components of glycosylphosphatidylinositol-mannosyltransferase I. Mol Biol Cell 16(3):1439–1448. doi: 10.1091/mbc.E04-09-0802 CrossRefGoogle Scholar
  2. Chiyonobu T, Inoue N, Morimoto M, Kinoshita T, Murakami Y (2014) Glycosylphosphatidylinositol (GPI) anchor deficiency caused by mutations in PIGW is associated with West syndrome and hyperphosphatasia with mental retardation syndrome. J Med Genet 51(3):203–207. doi: 10.1136/jmedgenet-2013-102156 CrossRefGoogle Scholar
  3. Fujita M, Maeda Y, Ra M, Yamaguchi Y, Taguchi R, Kinoshita T (2009) GPI glycan remodeling by PGAP5 regulates transport of GPI-anchored proteins from the ER to the Golgi. Cell 139(2):352–365. doi: 10.1016/j.cell.2009.08.040 CrossRefGoogle Scholar
  4. Fujita M, Watanabe R, Jaensch N, Romanova-Michaelides M, Satoh T, Kato M, Riezman H, Yamaguchi Y, Maeda Y, Kinoshita T (2011) Sorting of GPI-anchored proteins into ER exit sites by p24 proteins is dependent on remodeled GPI. J Cell Biol 194(1):61–75. doi: 10.1083/jcb.201012074 CrossRefGoogle Scholar
  5. Hansen L, Tawamie H, Murakami Y, Mang Y, ur Rehman S, Buchert R, Schaffer S, Muhammad S, Bak M, Nothen MM, Bennett EP, Maeda Y, Aigner M, Reis A, Kinoshita T, Tommerup N, Baig SM, Abou Jamra R (2013) Hypomorphic mutations in PGAP2, encoding a GPI-anchor-remodeling protein, cause autosomal-recessive intellectual disability. Am J Hum Genet 92(4):575–583. doi: 10.1016/j.ajhg.2013.03.008 CrossRefGoogle Scholar
  6. Hong Y, Maeda Y, Watanabe R, Ohishi K, Mishkind M, Riezman H, Kinoshita T (1999) Pig-n, a mammalian homologue of yeast Mcd4p, is involved in transferring phosphoethanolamine to the first mannose of the glycosylphosphatidylinositol. J Biol Chem 274:35099–35106CrossRefGoogle Scholar
  7. Hong Y, Maeda Y, Watanabe R, Inoue N, Ohishi K, Kinoshita T (2000) Requirement of PIG-F and PIG-O for transferring phosphoethanolamine to the third mannose in glycosylphosphatidylinositol. J Biol Chem 275:20911–20919CrossRefGoogle Scholar
  8. Hong Y, Ohishi K, Kang JY, Tanaka S, Inoue N, Nishimura J, Maeda Y, Kinoshita T (2003) Human PIG-U and yeast Cdc91p are the fifth subunit of GPI transamidase that attaches GPI-anchors to proteins. Mol Biol Cell 14:1780–1789CrossRefGoogle Scholar
  9. Houjou T, Hayakawa J, Watanabe R, Tashima Y, Maeda Y, Kinoshita T, Taguchi R (2007) Changes in molecular species profiles of glycosylphosphatidylinositol-anchor precursors in early stages of biosynthesis. J Lipid Res 48:1599–1606CrossRefGoogle Scholar
  10. Howard MF, Murakami Y, Pagnamenta AT, Daumer-Haas C, Fischer B, Hecht J, Keays DA, Knight SJ, Kolsch U, Kruger U, Leiz S, Maeda Y, Mitchell D, Mundlos S, Phillips JA 3rd, Robinson PN, Kini U, Taylor JC, Horn D, Kinoshita T, Krawitz PM (2014) Mutations in PGAP3 impair GPI-anchor maturation, causing a subtype of hyperphosphatasia with mental retardation. Am J Hum Genet 94(2):278–287. doi: 10.1016/j.ajhg.2013.12.012 CrossRefGoogle Scholar
  11. Inoue N, Kinoshita T, Orii T, Takeda J (1993) Cloning of a human gene, PIG-F, a component of glycosylphosphatidylinositol anchor biosynthesis, by a novel expression cloning strategy. J Biol Chem 268:6882–6885Google Scholar
  12. Kang JY, Hong Y, Ashida H, Shishioh N, Murakami Y, Morita YS, Maeda Y, Kinoshita T (2005) PIG-V involved in transferring the second mannose in glycosylphosphatidylinositol. J Biol Chem 280(10):9489–9497. doi: 10.1074/jbc.M413867200 CrossRefGoogle Scholar
  13. Kanzawa N, Maeda Y, Ogiso H, Murakami Y, Taguchi R, Kinoshita T (2009) Peroxisome dependency of alkyl-containing GPI-anchor biosynthesis in the endoplasmic reticulum. Proc Natl Acad Sci U S A 106(42):17711–17716. doi: 10.1073/pnas.0904762106 CrossRefGoogle Scholar
  14. Kanzawa N, Shimozawa N, Wanders RJ, Ikeda K, Murakami Y, Waterham HR, Mukai S, Fujita M, Maeda Y, Taguchi R, Fujiki Y, Kinoshita T (2012) Defective lipid remodeling of GPI anchors in peroxisomal disorders, Zellweger syndrome, and rhizomelic chondrodysplasia punctata. J Lipid Res 53(4):653–663. doi: 10.1194/jlr.M021204 CrossRefGoogle Scholar
  15. Kinoshita T, Fujita M, Maeda Y (2008) Biosynthesis, remodelling and functions of mammalian GPI-anchored proteins: recent progress. J Biochem 144(3):287–294. doi: 10.1093/jb/mvn090 CrossRefGoogle Scholar
  16. Kinoshita T, Maeda Y, Fujita M (2013) Transport of glycosylphosphatidylinositol-anchored proteins from the endoplasmic reticulum. Biochim Biophys Acta 1833(11):2473–2478. doi: 10.1016/j.bbamcr.2013.01.027 CrossRefGoogle Scholar
  17. Krawitz PM, Schweiger MR, Rodelsperger C, Marcelis C, Kolsch U, Meisel C, Stephani F, Kinoshita T, Murakami Y, Bauer S, Isau M, Fischer A, Dahl A, Kerick M, Hecht J, Kohler S, Jager M, Grunhagen J, de Condor BJ, Doelken S, Brunner HG, Meinecke P, Passarge E, Thompson MD, Cole DE, Horn D, Roscioli T, Mundlos S, Robinson PN (2010) Identity-by-descent filtering of exome sequence data identifies PIGV mutations in hyperphosphatasia mental retardation syndrome. Nat Genet 42(10):827–829. doi: 10.1038/ng.653 CrossRefGoogle Scholar
  18. Krawitz PM, Murakami Y, Hecht J, Kruger U, Holder SE, Mortier GR, Delle Chiaie B, De Baere E, Thompson MD, Roscioli T, Kielbasa S, Kinoshita T, Mundlos S, Robinson PN, Horn D (2012) Mutations in PIGO, a member of the GPI-anchor-synthesis pathway, cause hyperphosphatasia with mental retardation. Am J Hum Genet 91(1):146–151. doi: 10.1016/j.ajhg.2012.05.004 CrossRefGoogle Scholar
  19. Krawitz PM, Murakami Y, Riess A, Hietala M, Kruger U, Zhu N, Kinoshita T, Mundlos S, Hecht J, Robinson PN, Horn D (2013) PGAP2 mutations, affecting the GPI-anchor-synthesis pathway, cause hyperphosphatasia with mental retardation syndrome. Am J Hum Genet 92(4):584–589. doi: 10.1016/j.ajhg.2013.03.011 CrossRefGoogle Scholar
  20. Maeda Y, Watanabe R, Harris CL, Hong Y, Ohishi K, Kinoshita K, Kinoshita T (2001) PIG-M transfers the first mannose to glycosylphosphatidylinositol on the lumenal side of the ER. EMBO J 20:250–261CrossRefGoogle Scholar
  21. Maeda Y, Tashima Y, Houjou T, Fujita M, Yoko-o T, Jigami Y, Taguchi R, Kinoshita T (2007) Fatty acid remodeling of GPI-anchored proteins is required for their raft association. Mol Biol Cell 18(4):1497–1506CrossRefGoogle Scholar
  22. Murakami Y, Siripanyapinyo U, Hong Y, Kang JY, Ishihara S, Nakakuma H, Maeda Y, Kinoshita T (2003) PIG-W is critical for inositol acylation but not for flipping of glycosylphosphatidylinositol-anchor. Mol Biol Cell 14(10):4285–4295CrossRefGoogle Scholar
  23. Murakami Y, Siripanyaphinyo U, Hong Y, Tashima Y, Maeda Y, Kinoshita T (2005) The initial enzyme for glycosylphosphatidylinositol biosynthesis requires PIG-Y, a seventh component. Mol Biol Cell 16(11):5236–5246CrossRefGoogle Scholar
  24. Murakami H, Wang Y, Hasuwa H, Maeda Y, Kinoshita T, Murakami Y (2012a) Enhanced response of T lymphocytes from Pgap3 knockout mouse: insight into roles of fatty acid remodeling of GPI anchored proteins. Biochem Biophys Res Commun 417(4):1235–1241. doi: 10.1016/j.bbrc.2011.12.116 CrossRefGoogle Scholar
  25. Murakami Y, Kanzawa N, Saito K, Krawitz PM, Mundlos S, Robinson PN, Karadimitris A, Maeda Y, Kinoshita T (2012b) Mechanism for release of alkaline phosphatase caused by glycosylphosphatidylinositol deficiency in patients with hyperphosphatasia mental retardation syndrome. J Biol Chem 287(9):6318–6325. doi: 10.1074/jbc.M111.331090 CrossRefGoogle Scholar
  26. Nakamura N, Inoue N, Watanabe R, Takahashi M, Takeda J, Stevens VL, Kinoshita T (1997) Expression cloning of PIG-L, a candidate N-acetylglucosaminyl-phosphatidylinositol deacetylase. J Biol Chem 272:15834–15840CrossRefGoogle Scholar
  27. Ohishi K, Inoue N, Maeda Y, Takeda J, Riezman H, Kinoshita T (2000) Gaa1p and gpi8p are components of a glycosylphosphatidylinositol (GPI) transamidase that mediates attachment of GPI to proteins. Mol Biol Cell 11:1523–1533CrossRefGoogle Scholar
  28. Ohishi K, Inoue N, Kinoshita T (2001) PIG-S and PIG-T, essential for GPI anchor attachment to proteins, form a complex with GAA1 and GPI8. EMBO J 20:4088–4098CrossRefGoogle Scholar
  29. Orlean P, Menon AK (2007) Thematic review series: lipid posttranslational modifications. GPI anchoring of protein in yeast and mammalian cells, or: how we learned to stop worrying and love glycophospholipids. J Lipid Res 48(5):993–1011CrossRefGoogle Scholar
  30. Schroeder R, London E, Brown D (1994) Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proc Natl Acad Sci U S A 91(25):12130–12134CrossRefGoogle Scholar
  31. Seong J, Wang Y, Kinoshita T, Maeda Y (2013) Implications of lipid moiety in oligomerization and immunoreactivities of GPI-anchored proteins. J Lipid Res 54(4):1077–1091. doi: 10.1194/jlr.M034421 CrossRefGoogle Scholar
  32. Shishioh N, Hong Y, Ohishi K, Ashida H, Maeda Y, Kinoshita T (2005) GPI7 is the second partner of PIG-F and involved in modification of glycosylphosphatidylinositol. J Biol Chem 280(10):9728–9734CrossRefGoogle Scholar
  33. Suzuki KG, Kasai RS, Hirosawa KM, Nemoto YL, Ishibashi M, Miwa Y, Fujiwara TK, Kusumi A (2012) Transient GPI-anchored protein homodimers are units for raft organization and function. Nat Chem Biol 8(9):774–783. doi: 10.1038/nchembio.1028 CrossRefGoogle Scholar
  34. Takahashi M, Inoue N, Ohishi K, Maeda Y, Nakamura N, Endo Y, Fujita T, Takeda J, Kinoshita T (1996) PIG-B, a membrane protein of the endoplasmic reticulum with a large lumenal domain, is involved in transferring the third mannose of the GPI anchor. EMBO J 15:4254–4261Google Scholar
  35. Tanaka S, Maeda Y, Tashima Y, Kinoshita T (2004) Inositol deacylation of glycosylphosphatidylinositol-anchored proteins is mediated by mammalian PGAP1 and yeast Bst1p. J Biol Chem 279:14256–14263CrossRefGoogle Scholar
  36. Tashima Y, Taguchi R, Murata C, Ashida H, Kinoshita T, Maeda Y (2006) PGAP2 is essential for correct processing and stable expression of GPI-anchored proteins. Mol Biol Cell 17(3):1410–1420CrossRefGoogle Scholar
  37. Wang Y, Murakami Y, Yasui T, Wakana S, Kikutani H, Kinoshita T, Maeda Y (2013) Significance of glycosylphosphatidylinositol-anchored protein enrichment in lipid rafts for the control of autoimmunity. J Biol Chem 288(35):25490–25499. doi: 10.1074/jbc.M113.492611 CrossRefGoogle Scholar
  38. Watanabe R, Ohishi K, Maeda Y, Nakamura N, Kinoshita T (1999) Mammalian PIG-L and its yeast homologue Gpi12p are N-acetylglucosaminylphosphatidylinositol de-N-acetylases essential in glycosylphosphatidylinositol biosynthesis. Biochem J 339:185–192Google Scholar
  39. Watanabe R, Murakami Y, Marmor MD, Inoue N, Maeda Y, Hino J, Kangawa K, Julius M, Kinoshita T (2000) Initial enzyme for glycosylphosphatidylinositol biosynthesis requires PIG-P and is regulated by DPM2. EMBO J 19:4402–4411CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.WPI Immunology Frontier Research Center and Research Institute for Microbial DiseasesOsaka UniversitySuitaJapan

Personalised recommendations