Advertisement

Pattern Recognition in Legume Lectins to Extrapolate Amino Acid Variability to Sugar Specificity

  • Nisha Jayaprakash Grandhi
  • Ashalatha Sreshty Mamidi
  • Avadhesha SuroliaEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 842)

Abstract

Biologic recognition is critical for cell growth, its differentiation and a number of other physiological processes. Lectin carbohydrate interactions mediate and regulate these cellular processes. Hence they have attracted a lot of attention recently. Amongst lectins, those from legumes are the most widely studied. Herein, we report our findings based on the influence of amino acid constitution in maintaining the structural integrity and sugar binding specificity of these lectins. We have implemented a pattern recognition system represented by heatmaps and clustergrams. Percentage identity and amino acid composition of 46 legume lectins were computed to distinguish between different sugar specific lectins and derive a consensus amongst them. A clear distinction was apparent between different monosaccharide binding groups based on their composition, sequence identities and the specific amino residues in their combining sites.

Keywords

Percentage Identity Lens Culinaris Carbohydrate Recognition Domain Specific Lectin Legume Lectin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work has been funded by Council of Scientific and Industrial Research (CSIR), India. A.S. is a Bhatnagar fellow, N.G.J. thanks Department of Science and Technology (DST), Govt of India for INSPIRE Fellowship. M.A.S. is a D.S. Kothari fellow supported by University Grants Commission (UGC), India.

References

  1. Audette GF, Vandonselaar M, Delbaere LT (2000) The 2.2 Å resolution structure of the O(H) blood-group-specific lectin I from Ulex europaeus. J Mol Biol 304(3):423–433CrossRefGoogle Scholar
  2. Babino A, Tello D, Rojas A, Bay S, Osinaga E, Alzari PM (2003) The crystal structure of a plant lectin in complex with the Tn antigen. FEBS Lett 536(1–3):106–110CrossRefGoogle Scholar
  3. Benevides RG, Ganne G, Simoes Rda C, Schubert V, Niemietz M, Unverzagt C, Chazalet V, Breton C, Varrot A, Cavada BS, Imberty A (2012) A lectin from Platypodium elegans with unusual specificity and affinity for asymmeteric complex N glycans. J Biol Chem 287(31):26352–26364CrossRefGoogle Scholar
  4. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242CrossRefGoogle Scholar
  5. Bezerra EH, Rocha BA, Nagano CS, Bezerra Gde A, Moura TR, Bezerra MJ, Benevides RG, Sampaio AH, Assreuy AM, Delatorre P, Cavada BS (2011) Structural analysis of ConBr reveals molecular correlation between the carbohydrate recognition domain and endothelial NO synthase activation. Biochem Biophys Res Commun 408(4):566–570CrossRefGoogle Scholar
  6. Bourne Y, Roussel A, Frey M, Rougé P, Fontecilla-Camps JC, Cambillau C (1990) Three-dimensional structures of complexes of Lathyrus ochrus isolectin I with glucose and mannose: fine specificity of the monosaccharide-binding site. Proteins 8(4):365–376CrossRefGoogle Scholar
  7. Buts L, Dao-Thi MH, Loris R, Wyns L, Etzler M, Hamelryck T (2001) Weak protein-protein interactions in lectins: the crystal structure of a vegetative lectin from the legume Dolichos biflorus. J Mol Biol 309(1):193–201CrossRefGoogle Scholar
  8. Buts L, Garcia-Pino A, Wyns L, Loris R (2006) Structural basis of carbohydrate recognition by a Man(alpha1-2)Man-specific lectin from Bowringia milbraedii. Glycobiology 16(7):635–640CrossRefGoogle Scholar
  9. da Silva LC, Correia MT (2014) Plant lectins and Toll-like receptors: implications for therapy of microbial infections. Front Microbiol 5:20Google Scholar
  10. de Oliveira TM, Delatorre P, da Rocha BA, de Souza EP, Nascimento KS, Bezerra GA, Moura TR, Benevides RG, Bezerra EH, Moreno FB, Freire VN, de Azevedo WF Jr, Cavada BS (2008) Crystal structure of Dioclea rostrata lectin: insights into understanding the pH-dependent dimer-tetramer equilibrium and the structural basis for carbohydrate recognition in Diocleinae lectins. J Struct Biol 164(2):177–182CrossRefGoogle Scholar
  11. de Souza GA, Oliveira PS, Trapani S, Santos AC, Rosa JC, Laure HJ, Faça VM, Correia MT, Tavares GA, Oliva G, Coelho LC, Greene LJ (2003) Amino acid sequence and tertiary structure of Cratylia mollis seed lectin. Glycobiology 13(12):961–972CrossRefGoogle Scholar
  12. Debraya H, Rougé P (1984) The fine sugar specificity of the Lathyrus ochrus seed lectin and isolectins. FEBS Lett 176(1):120–124CrossRefGoogle Scholar
  13. Del Sol FG, Cavada BS, Calvete JJ (2007) Crystal structures of Cratylia floribunda seed lectin at acidic and basic pHs. Insights into the structural basis of the pH-dependent dimer-tetramer transition. J Struct Biol 158(1):1–9CrossRefGoogle Scholar
  14. Delbaere LT, Vandonselaar M, Prasad L, Quail JW, Wilson KS, Dauter Z (1993) Structures of the lectin IV of Griffonia simplicifolia and its complex with the Lewis b human blood group determinant at 2.0 Å resolution. J Mol Biol 230(3):950–965CrossRefGoogle Scholar
  15. Duin RPW, Pekalska E (2007) The science of pattern recognition; achievements and perspectives. In: Duch W, Mandziuk J (eds) Challenges for computational intelligence, studies in computational intelligence, vol 63. Springer, Heidelberg, pp 221–259CrossRefGoogle Scholar
  16. Edelman GM, Cunningham BA, Reeke GN Jr, Becker JW, Waxdal MJ, Wang JL (1972) The covalent and three dimensional structure of concanavalin A. Proc Natl Acad Sci 69:2580–2584CrossRefGoogle Scholar
  17. Etzler ME, Surolia A, Cummings RD (2009) L-type lectins (Chap. 29). In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  18. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana, Totowa, pp 571–607CrossRefGoogle Scholar
  19. Geethanandan K, Abhilash J, Bharath SR, Sadasivan C, Haridas M (2011) X-ray structure of a galactose-specific lectin from Spatholobous parviflorous. Int J Biol Macromol 49(5): 992–998CrossRefGoogle Scholar
  20. Hamelryck TW, Dao-Thi MH, Poortmans F, Chrispeels MJ, Wyns L, Loris R (1996a) The crystallographic structure of phytohemagglutinin-L. J Biol Chem 271(34):20479–20485CrossRefGoogle Scholar
  21. Hamelryck TW, Poortmans F, Goossens A, Angenon G, Van Montagu M, Wyns L, Loris R (1996b) Crystal structure of arcelin-5, a lectin-like defense protein from Phaseolus vulgaris. J Biol Chem 271(51):32796–32802CrossRefGoogle Scholar
  22. Hamelryck TW, Loris R, Bouckaert J, Dao-Thi MH, Strecker G, Imberty A, Fernandez E, Wyns L, Etzler ME (1999) Carbohydrate binding, quaternary structure and a novel hydrophobic binding site in two legume lectin oligomers from Dolichos biflorus. J Mol Biol 286(4):1161–1177CrossRefGoogle Scholar
  23. Imberty A, Gautier C, Lescar J, Pérez S, Wyns L, Loris R (2000) An unusual carbohydrate binding site revealed by the structures of two Maackia amurensis lectins complexed with sialic acid-containing oligosaccharides. J Biol Chem 275(23):17541–17548CrossRefGoogle Scholar
  24. Kolberg J, Michaelsen TE, Sletten K (1980) Subunit structure and N terminal sequences of the Lathyrus odoratus lectin. FEBS Lett 117:281–283CrossRefGoogle Scholar
  25. Kundhavai Natchiar S, Arockia Jeyaprakash A, Ramya TN, Thomas CJ, Suguna K, Surolia A, Vijayan M (2004) Structural plasticity of peanut lectin: an X-ray analysis involving variation in pH, ligand binding and crystal structure. Acta Crystallogr D Biol Crystallogr 60(2):211–219CrossRefGoogle Scholar
  26. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) ClustalW and ClustalX version 2. Bioinformatics 23(21):2947–2948CrossRefGoogle Scholar
  27. Liener IE, Sharon N, Goldstein IJ (1986) The lectins: properties, functions, and applications in biology and medicine. Academic Press, OrlandoGoogle Scholar
  28. Loris R, Van Overberge D, Dao-Thi MH, Poortmans F, Maene N, Wyns L (1994) Structural analysis of two crystal forms of lentil lectin at 1.8 Å resolution. Proteins 20(4):330–346CrossRefGoogle Scholar
  29. Loris R, Hamelryck T, Bouckaert J, Wyns L (1998) Legume lectin structure. Biochim Biophys Acta 1383:9–36CrossRefGoogle Scholar
  30. Loris R, De Greve H, Dao-Thi MH, Messens J, Imberty A, Wyns L (2000) Structural basis of carbohydrate recognition by lectin II from Ulex europaeus, a protein with a promiscuous carbohydrate-binding site. J Mol Biol 301(4):987–1002CrossRefGoogle Scholar
  31. Loris R, Van Walle I, De Greve H, Beeckmans S, Deboeck F, Wyns L, Bouckaert J (2004) Structural basis of oligomannose recognition by the Pterocarpus angolensis seed lectin. J Mol Biol 335(5):1227–1240CrossRefGoogle Scholar
  32. MacQueen JB (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley symposium on mathematical statistics and probability, vol 1, University of California Press, Berkeley, pp 281–297Google Scholar
  33. Manoj N, Suguna K (2001) Signature of quaternary structure in the sequences of legume lectins. Protein Eng 14(10):735–745CrossRefGoogle Scholar
  34. Manoj N, Srinivas VR, Suguna K (1999) Structure of basic winged-bean lectin and a comparison with its saccharide-bound form. Acta Crystallogr D Biol Crystallogr 55(4):794–800CrossRefGoogle Scholar
  35. Manoj N, Srinivas VR, Surolia A, Vijayan M, Suguna K (2000) Carbohydrate specificity and salt-bridge mediated conformational change in acidic winged bean agglutinin. J Mol Biol 302(5):1129–1137CrossRefGoogle Scholar
  36. MATLAB v7.5, MathWorks (2007) Bioinformatics toolbox: user’s guide (R2007b)Google Scholar
  37. Moreira GM, Conceição FR, McBride AJ, Pinto Lda S (2013) Structure predictions of two Bauhinia variegata lectins reveal patterns of C-terminal properties in single chain legume lectins. PLoS One 8(11)Google Scholar
  38. Moreno FB, Bezerra GA, Oliveira TM, de Souza EP, da Rocha BA, Benevides RG, Delatorre P, de Azevedo WF, Jr CBS (2007) Structural analysis of Canavalia maritima and Canavalia gladiata lectins complexed with different dimannosides: new insights into the understanding of the structure-biological activity relationship in legume lectins. J Struct Biol 160(2):168–176CrossRefGoogle Scholar
  39. Moreno FB, de Oliveira TM, Martil DE, Viçoti MM, Bezerra GA, Abrego JR, Cavada BS, Filgueira de Azevedo W Jr (2008) Identification of a new quaternary association for legume lectins. J Struct Biol 161(2):133–143CrossRefGoogle Scholar
  40. Mourey L, Pédelacq JD, Birck C, Fabre C, Rougé P, Samama JP (1998) Crystal structure of the arcelin-1 dimer from Phaseolus vulgaris at 1.9 Å resolution. J Biol Chem 273(21):12914–12922CrossRefGoogle Scholar
  41. Mueller-Dieckmann C, Panjikar S, Tucker PA, Weiss MS (2005) On the routine use of soft X-rays in macromolecular crystallography. Part III The optimal data-collection wavelength. Acta Crystallogr D Biol Crystallogr 61(9):1263–1272CrossRefGoogle Scholar
  42. Nagano CS, Calvete JJ, Barettino D, Pérez A, Cavada BS, Sanz L (2008) Insights into the structural basis of the pH-dependent dimer-tetramer equilibrium through crystallographic analysis of recombinant Diocleinae lectins. Biochem J 409(2):417–428CrossRefGoogle Scholar
  43. Nóbrega RB, Rocha BA, Gadelha CA, Santi-Gadelha T, Pires AF, Assreuy AM, Nascimento KS, Nagano CS, Sampaio AH, Cavada BS, Delatorre P (2012) Structure of Dioclea virgata lectin: Relations between carbohydrate binding site and nitric oxide production. Biochimie 94(3):900–906CrossRefGoogle Scholar
  44. Olsen LR, Dessen A, Gupta D, Sabesan S, Sacchettini JC, Brewer CF (1997) X-ray crystallographic studies of unique cross-linked lattices between four isomeric biantennary oligosaccharides and soybean agglutinin. Biochemistry 36(49):15073–15080CrossRefGoogle Scholar
  45. Rabijns A, Verboven C, Rougé P, Barre A, Van Damme EJ, Peumans WJ, De Ranter CJ (2001) Structure of a legume lectin from the bark of Robinia pseudoacacia and its complex with N-acetylgalactosamine. Proteins 44(4):470–478CrossRefGoogle Scholar
  46. Rangel TB, Rocha BA, Bezerra GA, Assreuy AM, Pires Ade F, do Nascimento AS, Bezerra MJ, do Nascimento KS, Nagano CS, Sampaio AH, Gruber K, Delatorre P, Fernandes PM, Cavada BS (2012) Crystal structure of a pro-inflammatory lectin from the seeds of Dioclea wilsonii Standl. Biochimie 94(2):525–532CrossRefGoogle Scholar
  47. Rao VSR, Lam K, Qasba PK (1998) Architecture of the sugar binding sites in carbohydrate binding proteins—a computer modeling study. Int J Biol Macromol 23(4):295–307CrossRefGoogle Scholar
  48. Reeke GN Jr, Becker JW (1986) Three-dimensional structure of favin: saccharide binding-cyclic permutation in leguminous lectins. Science 234(4780):1108–1111CrossRefGoogle Scholar
  49. Rocha BA, Delatorre P, Oliveira TM, Benevides RG, Pires AF, Sousa AA, Souza LA, Assreuy AM, Debray H, de Azevedo WF, Jr SAH, Cavada BS (2011) Structural basis for both pro- and anti-inflammatory response induced by mannose-specific legume lectin from Cymbosema roseum. Biochimie 93(5):806–816CrossRefGoogle Scholar
  50. Rocha BA, Souza Teixeira C, da Silva HC, de Moura TR, Pereira-Júnior FN, do Nascimento KS, Nagano CS, Sampaio AH, Delatorre P, Cavada BS (2012) Crystal structure of the lectin of Camptosema pedicellatum: implications of a conservative substitution at the hydrophobic subsite. J Biochem 152(1):87–98CrossRefGoogle Scholar
  51. Sanders DA, Moothoo DN, Raftery J, Howard AJ, Helliwell JR, Naismith JH (2001) The 1.2 Å resolution structure of the Con A-dimannose complex. J Mol Biol 310(4):875–884CrossRefGoogle Scholar
  52. Shaanan B, Elgavish S (1998) Structures of the Erythrina corallodendron lectin and of its complexes with mono- and disaccharides. J Mol Biol 277(4):917–932CrossRefGoogle Scholar
  53. Sharma V, Surolia A (1997) Analyses of carbohydrate recognition by legume lectins: size of the combining site loops and their primary specificity. J Mol Biol 267:433–445CrossRefGoogle Scholar
  54. Sharma V, Srinivas VR, Adhikari P, Vijayan M, Surolia A (1998) Molecular basis of recognition by Gal/GalNAc specific legume lectins: influence of Glu 129 on the specificity of peanut agglutinin (PNA) towards C2-substituents of galactose. Glycobiology 8(10):1007–1012CrossRefGoogle Scholar
  55. Sharon N, Lis H (1990) Legume lectins: a large family of homologous proteins. FASEB J 4:3198–3208Google Scholar
  56. Sharon N, Lis H (1995) Lectins-proteins with a sweet tooth: functions in cell recognition. Essays Biochem 30:59–75Google Scholar
  57. Sharon N, Lis H (2002) How proteins bind carbohydrates: lessons from legume lectins. J Agric Food Chem 50:6586–6591CrossRefGoogle Scholar
  58. Sharon N, Lis H (2004) History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology 14(11):53–62CrossRefGoogle Scholar
  59. Shetty KN, Latha VL, Rao RN, Nadimpalli SK, Suguna K (2013) Affinity of a galactose-specific legume lectin from Dolichos lablab to adenine revealed by X-ray crystallography. IUBMB Life 65(7):633–644CrossRefGoogle Scholar
  60. Srinivas VR, Reddy GB, Ahmad N, Swaminathan CP, Mitra N, Surolia A (2001) Legume lectin family, the ‘natural mutants of the quaternary state’, provide insights into the relationship between protein stability and oligomerization. Biochim Biophys Acta 1527:102–111CrossRefGoogle Scholar
  61. Suddath FL, Prasthofer T, Phillips SR, Engler JA (1989) Design, expression, and crystallization of recombinant lectin from the garden pea (Pisum sativum). J Biol Chem 264(12):6793–6796Google Scholar
  62. Sundberg EJ, Trastoy B, Bonsor DA, Perez-Ojeda ME, Jimeno ML, Garcia-Fernandez JM, Chiara JL (2012) Synthesis and biophysical study of disassembling nano hybrid bioconjugates with a cubic octasilsesquioxane core. Adv Funct Mater 22:3191–3201CrossRefGoogle Scholar
  63. Svensson C, Teneberg S, Nilsson CL, Kjellberg A, Schwarz FP, Sharon N, Krengel U (2002) High-resolution crystal structures of Erythrina cristagalli lectin in complex with lactose and 2′-alpha-L-fucosyllactose and correlation with thermodynamic binding data. J Mol Biol 321(1):69–83CrossRefGoogle Scholar
  64. Swamy MJ, Sastry MVK, Surolia A (1985) Prediction and comparison of the secondary structure of legume lectins. J Biosci 9(3–4):203–212CrossRefGoogle Scholar
  65. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefGoogle Scholar
  66. Tempel W, Tschampel S, Woods RJ (2002) The xenograft antigen bound to Griffonia simplicifolia lectin 1-B(4). X-ray crystal structure of the complex and molecular dynamics characterization of the binding site. J Biol Chem 277(8):6615–6621CrossRefGoogle Scholar
  67. Thomas CJ, Surolia A (2000) Mode of molecular recognition of l-fucose by fucose-binding legume lectins. Biochem Biophys Res Commun 268:262–267CrossRefGoogle Scholar
  68. Weisstein E (1995) K-Means clustering algorithm. From MathWorld—A Wolfram Web Resource. http://mathworld.wolfram.com/K-MeansClusteringAlgorithm.html
  69. Xu D, Zhang Y (2013) Toward optimal fragment generations for ab initio protein structure assembly. Proteins 81(2):229–239CrossRefGoogle Scholar
  70. Young NM, Oomen RP (1992) Analysis of sequence variation among legume lectins. J Mol Biol 228:924–934CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Nisha Jayaprakash Grandhi
    • 1
  • Ashalatha Sreshty Mamidi
    • 1
  • Avadhesha Surolia
    • 1
    Email author
  1. 1.Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia

Personalised recommendations