Dimensions of Uncertainty in Evidential Grid Maps

  • Thomas Reineking
  • Joachim Clemens
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8684)


We show how a SLAM algorithm based on belief function theory can produce evidential occupancy grid maps that provide a mobile robot with additional information about its environment. While uncertainty in probabilistic grid maps is usually measured by entropy, we show that for evidential grid maps, uncertainty can be expressed in a three-dimensional space and we propose appropriate measures for quantifying uncertainty in these different dimensions. We analyze these measures in a practical mapping example containing typical sources of uncertainty for SLAM. As a result of the evidential representation, the robot is able to distinguish between different sources of uncertainty (e.g., a lack of measurements vs. conflicting measurements) which are indistinguishable in the probabilistic framework.


Mobile Robot Belief State Belief Function Sensor Model Evidential Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carlson, J., Murphy, R., Christopher, S., Casper, J.: Conflict metric as a measure of sensing quality. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 2032–2039 (2005)Google Scholar
  2. 2.
    Cassandra, A.R., Kaelbling, L.P., Kurien, J.A.: Acting under uncertainty: Discrete bayesian models for mobile-robot navigation. In: Proceedings of the 1996 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 1996, vol. 2, pp. 963–972. IEEE (1996)Google Scholar
  3. 3.
    Doucet, A., De Freitas, N., Murphy, K., Russell, S.: Rao-Blackwellised particle filtering for dynamic Bayesian networks. In: Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence, pp. 176–183 (2000)Google Scholar
  4. 4.
    Doucet, A., Godsill, S., Andrieu, C.: On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing 10(3), 197–208 (2000)CrossRefGoogle Scholar
  5. 5.
    Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: part i. IEEE Robotics & Automation Magazine 13(2), 99–110 (2006)CrossRefGoogle Scholar
  6. 6.
    Elfes, A.: Using occupancy grids for mobile robot perception and navigation. Computer 22(6), 46–57 (1989)CrossRefGoogle Scholar
  7. 7.
    Gambino, F., Ulivi, G., Vendittelli, M.: The transferable belief model in ultrasonic map building. In: Proceedings of the Sixth IEEE International Conference on Fuzzy Systems, vol. 1, pp. 601–608. IEEE (1997)Google Scholar
  8. 8.
    Hartley, R.V.L.: Transmission of information. The Bell Labs Technical Journal 7(3) (1928)Google Scholar
  9. 9.
    Klir, G.J.: Uncertainty and information: foundations of generalized information theory. Wiley (2005)Google Scholar
  10. 10.
    Klir, G.J., Smith, R.M.: On measuring uncertainty and uncertainty-based information: Recent developments. Annals of Mathematics and Artificial Intelligence 32(1-4), 5–33 (2001)Google Scholar
  11. 11.
    Kurdej, M., Moras, J., Cherfaoui, V., Bonnifait, P.: Controlling remanence in evidential grids using geodata for dynamic scene perception. International Journal of Approximate Reasoning 55(1, part 3), 355–375 (2014)Google Scholar
  12. 12.
    Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM: A factored solution to the simultaneous localization and mapping problem. In: Proceedings of the National Conference on Artificial Intelligence, pp. 593–598 (2002)Google Scholar
  13. 13.
    Moras, J., Cherfaoui, V., Bonnifait, P.: Credibilist occupancy grids for vehicle perception in dynamic environments. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 84–89 (May 2011)Google Scholar
  14. 14.
    Pagac, D., Nebot, E.M., Durrant-Whyte, H.: An evidential approach to map-building for autonomous vehicles. IEEE Transactions on Robotics and Automation 14(4), 623–629 (1998)CrossRefGoogle Scholar
  15. 15.
    Reineking, T.: Belief Functions: Theory and Algorithms. Ph.D. thesis, University of Bremen (February 2014),
  16. 16.
    Reineking, T., Clemens, J.: Evidential FastSLAM for grid mapping. In: 16th International Conference on Information Fusion (FUSION), pp. 789–796 (July 2013)Google Scholar
  17. 17.
    Ribo, M., Pinz, A.: A comparison of three uncertainty calculi for building sonar-based occupancy grids. Robotics and Autonomous Systems 35(3-4), 201–209 (2001)CrossRefzbMATHGoogle Scholar
  18. 18.
    Sentz, K., Ferson, S.: Combination of evidence in Dempster-Shafer theory. Tech. rep., Sandia National Laboratories (2002)Google Scholar
  19. 19.
    Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)Google Scholar
  20. 20.
    Shannon, C.E.: A mathematical theory of communication. The Bell System Technical Journal 27, 379–423 (1948)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Smets, P.: Belief functions. In: Smets, P., Mamdani, E.H., Dubois, D., Prade, H. (eds.) Non Standard Logics for Automated Reasoning, pp. 253–286. Academic Press, London (1988)Google Scholar
  22. 22.
    Smets, P., Kennes, R.: The transferable belief model. Artificial Intelligence 66, 191–234 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Smets, P.: Belief functions: The disjunctive rule of combination and the generalized Bayesian theorem. International Journal of Approximate Reasoning 9, 1–35 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Smets, P.: Decision making in the TBM: the necessity of the pignistic transformation. International Journal of Approximate Reasoning 38, 133–147 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Stachniss, C., Grisetti, G., Burgard, W.: Information gain-based exploration using rao-blackwellized particle filters. In: Robotics: Science and Systems, vol. 2 (2005)Google Scholar
  26. 26.
    Thrun, S., Burgard, W., Fox, D.: Probabilistic robotics. MIT Press, Cambridge (2005)Google Scholar
  27. 27.
    Thrun, S., Fox, D., Burgard, W., Dellaert, F.: Robust Monte Carlo localization for mobile robots. Artificial Intelligence 128(1-2), 99–141 (2001)CrossRefzbMATHGoogle Scholar
  28. 28.
    Yager, R.R.: Entropy and specificity in a mathematical theory of evidence. International Journal of General System 9(4), 249–260 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Yang, T., Aitken, V.: Evidential mapping for mobile robots with range sensors. IEEE Transactions on Instrumentation and Measurement 55(4), 1422–1429 (2006)CrossRefGoogle Scholar
  30. 30.
    Zetzsche, C., Wolter, J., Schill, K.: Sensorimotor representation and knowledge-based reasoning for spatial exploration and localisation. Cognitive Processing 9, 283–297 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Thomas Reineking
    • 1
  • Joachim Clemens
    • 1
  1. 1.Cognitive NeuroinformaticsUniversity of BremenGermany

Personalised recommendations