NORX: Parallel and Scalable AEAD

  • Jean-Philippe Aumasson
  • Philipp Jovanovic
  • Samuel Neves
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8713)

Abstract

This paper introduces NORX, a novel authenticated encryption scheme supporting arbitrary parallelism degree and based on ARX primitives, yet not using modular additions. NORX has a unique parallel architecture based on the monkeyDuplex construction, with an original domain separation scheme for a simple processing of header, payload and trailer data. Furthermore, NORX specifies a dedicated datagram to facilitate interoperability and avoid users the trouble of defining custom encoding and signalling. NORX was optimized for efficiency in both software and hardware, with a SIMD-friendly core, almost byte-aligned rotations, no secret-dependent memory lookups, and only bitwise operations. On a Haswell processor, a serial version of NORX runs at 2.51 cycles per byte. Simulations of a hardware architecture for 180 nm UMC ASIC give a throughput of approximately 10Gbps at 125MHz.

Keywords

authenticated encryption stream cipher cryptographic sponges 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Permutation-based Encryption, Authentication and Authenticated Encryption. Presented at DIAC 2012, Stockholm, Sweden, July 05-06 (2012)Google Scholar
  2. 2.
    Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the Sponge: Single-Pass Authenticated Encryption and Other Applications. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 320–337. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Bernstein, D.J.: ChaCha, a Variant of Salsa20. In: Workshop Record of SASC 2008: The State of the Art of Stream Ciphers (2008), http://cr.yp.to/chacha.html
  4. 4.
    Knuth, D.E.: The Art of Computer Programming. Combinatorial Algorithms, Part 1, vol. 4A. Addison-Wesley, Upper Saddle River (2011), http://www-cs-faculty.stanford.edu/~uno/taocp.html Google Scholar
  5. 5.
    Official website of NORX (2014), https://www.norx.io
  6. 6.
    Aumasson, J.P., Neves, S., Wilcox-O’Hearn, Z., Winnerlein, C.: BLAKE2: Simpler, Smaller, Fast as MD5. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 119–135. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: On the Security of Keyed Sponge Constructions. Presented at SKEW 2011, Lyngby, Denmark, February 16-17 (2011), http://sponge.noekeon.org/SpongeKeyed.pdf
  8. 8.
    Jovanovic, P., Luykx, A., Mennink, B.: Beyond 2c/2 Security in Sponge-Based Authenticated Encryption Modes. Cryptology ePrint Archive, Report 2014/373 (2014), http://eprint.iacr.org/2014/373
  9. 9.
    Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Cryptographic Sponge Functions (2008), http://sponge.noekeon.org/CSF-0.1.pdf
  10. 10.
    Aumasson, J.-P., Fischer, S., Khazaei, S., Meier, W., Rechberger, C.: New Features of Latin Dances: Analysis of Salsa, ChaCha and Rumba. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 470–488. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Shi, Z., Zhang, B., Feng, D., Wu, W.: Improved Key Recovery Attacks on Reduced Round Salsa20 and ChaCha. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 337–351. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the Indifferentiability of the Sponge Construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 181–197. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Henzen, L., Carbognani, F., Felber, N., Fichtner, W.: VLSI Hardware Evaluation of the Stream Ciphers Salsa20 and ChaCha, and the Compression Function Rumba. In: 2nd International Conference on Signals, Circuits and Systems 2008, pp. 1–5. IEEE (2008)Google Scholar
  14. 14.
    Gueron, S.: AES-GCM Software Performance on the Current High End CPUs as a Performance Baseline for CAESAR Competition Presented at DIAC 2013, Chicago, USA, August 11-13 (2013), http://2013.diac.cr.yp.to/slides/gueron.pdf.
  15. 15.
    Käsper, E., Schwabe, P.: Faster and Timing-Attack Resistant AES-GCM. Cryptology ePrint Archive, Report 2009/129 (2009), http://eprint.iacr.org/2009/129
  16. 16.
    Jovanovic, P., Neves, S., Aumasson, J.P.: Analysis of NORX. Cryptology ePrint Archive, Report 2014/317 (2014), http://eprint.iacr.org/2014/317
  17. 17.
    Aumasson, J.P., Dinur, I., Henzen, L., Meier, W., Shamir, A.: Efficient FPGA Implementations of High-Dimensional Cube Testers on the Stream Cipher Grain-128. Cryptology ePrint Archive, Report 2009/218Google Scholar
  18. 18.
    Dinur, I., Shamir, A.: Cube Attacks on Tweakable Black Box Polynomials. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Stein, W.: Sage Mathematics Software. The Sage Development Team (2005–2013), http://sagemath.org
  20. 20.
    Ganesh, V., Govostes, R., Phang, K.Y., Soos, M., Schwartz, E.: STP — A Simple Theorem Prover (2006–2013), http://stp.github.io/stp
  21. 21.
    Gorski, M., Lucks, S., Peyrin, T.: Slide Attacks on a Class of Hash Functions. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 143–160. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Peyrin, T.: Security Analysis of Extended Sponge Functions. In: Presented at the ECRYPT Workshop Hash Functions in Cryptology: Theory and Practice, Leiden, The Netherlands (June 4, 2008), http://www.lorentzcenter.nl/lc/web/2008/309/presentations/Peyrin.pdf

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jean-Philippe Aumasson
    • 1
  • Philipp Jovanovic
    • 2
  • Samuel Neves
    • 3
  1. 1.Kudelski SecuritySwitzerland
  2. 2.University of PassauGermany
  3. 3.University of CoimbraPortugal

Personalised recommendations