StealthGuard: Proofs of Retrievability with Hidden Watchdogs
Abstract
This paper presents StealthGuard, an efficient and provably secure proof of retrievabillity (POR) scheme. StealthGuard makes use of a privacy-preserving word search (WS) algorithm to search, as part of a POR query, for randomly-valued blocks called watchdogs that are inserted in the file before outsourcing. Thanks to the privacy-preserving features of the WS, neither the cloud provider nor a third party intruder can guess which watchdog is queried in each POR query. Similarly, the responses to POR queries are also obfuscated. Hence to answer correctly to every new set of POR queries, the cloud provider has to retain the file in its entirety. StealthGuard stands out from the earlier sentinel-based POR scheme proposed by Juels and Kaliski (JK), due to the use of WS and the support for an unlimited number of queries by StealthGuard. The paper also presents a formal security analysis of the protocol.
Keywords
Cloud storage Proofs of Retrievability Privacy-preserving word searchPreview
Unable to display preview. Download preview PDF.
References
- 1.Juels, A., Kaliski Jr., B.S.: Pors: proofs of retrievability for large files. In: Ning, P., di Vimercati, S.D.C., Syverson, P.F. (eds.) ACM Conference on Computer and Communications Security, pp. 584–597. ACM (2007)Google Scholar
- 2.Shacham, H., Waters, B.: Compact proofs of retrievability. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008)CrossRefGoogle Scholar
- 3.Ateniese, G., Burns, R.C., Curtmola, R., Herring, J., Khan, O., Kissner, L., Peterson, Z.N.J., Song, D.: Remote data checking using provable data possession. ACM Trans. Inf. Syst. Secur. 14(1), 12 (2011)CrossRefGoogle Scholar
- 4.Xu, J., Chang, E.C.: Towards efficient proofs of retrievability. In: ASIACCS, pp. 79–80 (2012)Google Scholar
- 5.Stefanov, E., van Dijk, M., Juels, A., Oprea, A.: Iris: a scalable cloud file system with efficient integrity checks. In: ACSAC, pp. 229–238 (2012)Google Scholar
- 6.Reed, I.S., Solomon, G.: Polynomial Codes Over Certain Finite Fields. Journal of the Society of Industrial and Applied Mathematics 8(2), 300–304 (1960)CrossRefMATHMathSciNetGoogle Scholar
- 7.Dworkin, M.: Recommendation for Block Cipher Modes of Operation: Methods and Techniques. National Institute of Standards and Technology. Special Publication 800-38A (2001)Google Scholar
- 8.Blass, E.-O., Di Pietro, R., Molva, R., Önen, M.: PRISM – Privacy-Preserving Search in MapReduce. In: Fischer-Hübner, S., Wright, M. (eds.) PETS 2012. LNCS, vol. 7384, pp. 180–200. Springer, Heidelberg (2012)CrossRefGoogle Scholar
- 9.Ateniese, G., Pietro, R.D., Mancini, L.V., Tsudik, G.: Scalable and efficient provable data possession. In: Proceedings of the 4th International Conference on Security and Privacy in Communication Networks, SecureComm 2008, pp. 9:1–9:10. ACM, New York (2008)Google Scholar
- 10.Erway, C., Küpçü, A., Papamanthou, C., Tamassia, R.: Dynamic provable data possession. In: Proceedings of the 16th ACM Conference on Computer and Communications Security, CCS 2009, pp. 213–222. ACM, New York (2009)Google Scholar
- 11.Wang, Q., Wang, C., Li, J., Ren, K., Lou, W.: Enabling public verifiability and data dynamics for storage security in cloud computing. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 355–370. Springer, Heidelberg (2009)CrossRefGoogle Scholar
- 12.Zheng, Q., Xu, S.: Fair and dynamic proofs of retrievability. In: CODASPY, pp. 237–248 (2011)Google Scholar
- 13.Wang, Q., Wang, C., Ren, K., Lou, W., Li, J.: Enabling public auditability and data dynamics for storage security in cloud computing. IEEE Trans. Parallel Distrib. Syst. 22(5), 847–859 (2011)CrossRefGoogle Scholar
- 14.Mo, Z., Zhou, Y., Chen, S.: A dynamic proof of retrievability (por) scheme with o(logn) complexity. In: ICC, pp. 912–916 (2012)Google Scholar
- 15.Chen, B., Curtmola, R.: Robust dynamic provable data possession. In: ICDCS Workshops, pp. 515–525 (2012)Google Scholar
- 16.Cash, D., Küpçü, A., Wichs, D.: Dynamic proofs of retrievability via oblivious RAM. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 279–295. Springer, Heidelberg (2013)CrossRefGoogle Scholar
- 17.Shi, E., Stefanov, E., Papamanthou, C.: Practical dynamic proofs of retrievability. In: ACM Conference on Computer and Communications Security, pp. 325–336 (2013)Google Scholar
- 18.Fan, L., Cao, P., Almeida, J., Broder, A.Z.: Summary Cache: a Scalable Wide-Area Web Cache Sharing Protocol. IEEE/ACM Trans. Netw. 8(3), 281–293 (2000)CrossRefGoogle Scholar
- 19.Bellare, M., Canetti, R., Krawczyk, H.: Keying Hash Functions for Message Authentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer, Heidelberg (1996)Google Scholar
- 20.Azraoui, M., Elkhiyaoui, K., Molva, R., Önen, M.: Stealthguard: Proofs of retrievability with hidden watchdogs. Technical report, EURECOM (June 2014)Google Scholar
- 21.Trostle, J., Parrish, A.: Efficient Computationally Private Information Retrieval from Anonymity or Trapdoor Groups. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC 2010. LNCS, vol. 6531, pp. 114–128. Springer, Heidelberg (2011)CrossRefGoogle Scholar
- 22.Ateniese, G., Burns, R.C., Curtmola, R., Herring, J., Kissner, L., Peterson, Z.N.J., Song, D.: Provable data possession at untrusted stores. In: Ning, P., di Vimercati, S.D.C., Syverson, P.F. (eds.) ACM Conference on Computer and Communications Security, pp. 598–609. ACM (2007)Google Scholar
- 23.Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. J. Cryptology 17(4), 297–319 (2004)CrossRefMATHMathSciNetGoogle Scholar
- 24.Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 177–194. Springer, Heidelberg (2010)CrossRefGoogle Scholar