Excitation/Inhibition Patterns in a System of Coupled Cortical Columns

  • Daniel Malagarriga
  • Alessandro E. P. Villa
  • Jordi García-Ojalvo
  • Antonio J. Pons
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8681)


We study how excitation and inhibition are distributed mesoscopically in small brain regions, by means of a computational model of coupled cortical columns described by neural mass models. Two cortical columns coupled bidirectionally through both excitatory and inhibitory connections can spontaneously organize in a regime in which one of the columns is purely excitatory and the other is purely inhibitory, provided the excitatory and inhibitory coupling strengths are adequately tuned. We also study the case of three columns in different coupling configurations (linear array and all-to-all coupling), finding abrupt transitions between heterogeneous and homogeneous excitatory/inhibitory patterns and strong multistability in their distribution.


Coupling Strength Inhibitory Connection Cortical Column Neural Mass Model Pyramidal Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Douglas, R.J., Martin, K.A., Whitteridge, D.: A canonical microcircuit for neocortex. Neural Computation 1(4), 480–488 (1989)CrossRefGoogle Scholar
  2. 2.
    Amit, D.J.: Modeling brain function: The world of attractor neural networks. Cambridge University Press (1992)Google Scholar
  3. 3.
    van Vreeswijk, C., Sompolinsky, H.: Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274(5293), 1724–1726 (1996)CrossRefGoogle Scholar
  4. 4.
    Hill, S., Villa, A.E.P.: Dynamic transitions in global network activity influenced by the balance of excitation and inhibtion. Network: Computational Neural Networks 8, 165–184 (1997)CrossRefGoogle Scholar
  5. 5.
    Iglesias, J., García-Ojalvo, J., Villa, A.E.P.: Effect of feedback strength in coupled spiking neural networks. In: Kůrková, V., Neruda, R., Koutník, J. (eds.) ICANN 2008, Part II. LNCS, vol. 5164, pp. 646–654. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    van Vreeswijk, C., Sompolinsky, H.: Chaotic balanced state in a model of cortical circuits. Neural Comput. 10(6), 1321–1371 (1998)CrossRefGoogle Scholar
  7. 7.
    Singer, W.: Neuronal synchrony: A versatile code for the definition of relations? Neuron 24(1), 49–65 (1999)CrossRefGoogle Scholar
  8. 8.
    Malagarriga, D., Villa, A.E.P., García-Ojalvo, J., Pons, A.J.: Spontaneous segregation of excitation and inhibition in a system of coupled cortical columns (to be submitted)Google Scholar
  9. 9.
    Yoshimura, Y., Dantzker, J.L.M., Callaway, E.M.: Excitatory cortical neurons form fine-scale functional networks. Nature 433(7028), 868–873 (2005)CrossRefGoogle Scholar
  10. 10.
    Lopes da Silva, F.H., Hoeks, A., Smits, H., Zetterberg, L.H.: Model of brain rhythmic activity. the alpha-rhythm of the thalamus. Kybernetik 15(1), 27–37 (1974)CrossRefGoogle Scholar
  11. 11.
    Zetterberg, L.H., Kristiansson, L., Mossberg, K.: Performance of a model for a local neuron population. Biol. Cybern. 31(1), 15–26 (1978)CrossRefzbMATHGoogle Scholar
  12. 12.
    Jansen, B.H., Rit, V.G.: Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol. Cybern. 73(4), 357–366 (1995)CrossRefzbMATHGoogle Scholar
  13. 13.
    Blackstad, T.W., Osen, K.K., Mugnaini, E.: Pyramidal neurones of the dorsal cochlear nucleus: A golgi and computer reconstruction study in cat. Neuroscience 13, 827–854 (1984)CrossRefGoogle Scholar
  14. 14.
    García-Ojalvo, J., Sancho, J.M.: Noise in spatially extended systems (1999)Google Scholar
  15. 15.
    Galassi, M., et al.: Gnu scientific library reference manual. 3rd edn. (January 1, 2009)Google Scholar
  16. 16.
    Hunter, J.D.: Matplotlib: A 2d graphics environment. Computing In Science & Engineering 9(3), 90–95 (2007)CrossRefGoogle Scholar
  17. 17.
    Mariño, J., Schummers, J., Lyon, D.C., Schwabe, L., Beck, O., Wiesing, P., Obermayer, K., Sur, M.: Invariant computations in local cortical networks with balanced excitation and inhibition. Nature Neuroscience 8(2), 194–201 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Daniel Malagarriga
    • 1
    • 2
  • Alessandro E. P. Villa
    • 2
  • Jordi García-Ojalvo
    • 3
  • Antonio J. Pons
    • 1
  1. 1.Departament de Física i Enginyeria NuclearUniversitat Politècnica de CatalunyaTerrassaSpain
  2. 2.Neuroheuristic Research Group, Faculty of Business and EconomicsUniversity of LausanneLausanneSwitzerland
  3. 3.Department of Experimental and Health SciencesUniversitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB)BarcelonaSpain

Personalised recommendations