Advertisement

Modeling of Chaotic Time Series by Interval Type-2 NEO-Fuzzy Neural Network

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8681)

Abstract

This paper describes the development of Interval Type-2 NEO-Fuzzy Neural Network for modeling of complex dynamics. The proposed network represents a parallel set of multiple zero order Sugeno type approximations, related only to their own input argument. The induced gradient based learning procedure, adjusts solely the consequent network parameters. To improve the robustness of the network and the possibilities for handling uncertainties, Type-2 Gaussian fuzzy sets are introduced into the network topology. The potentials of the proposed approach in modeling of Mackey-Glass and Rossler Chaotic time series are studied.

Keywords

neo-fuzzy neuron neural networks type-2 fuzzy set dynamic modeling chaotic time-series prediction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jang, J.-S.R., Sun, C.-T., Mizutani, E.: Neuro-Fuzzy and Soft Computing – A Computational Approach to Learning and Machine Intelligence. Prentice Hall (1997)Google Scholar
  2. 2.
    Jin, Y.: Advanced Fuzzy Systems Design and Applications. Physica (2003)Google Scholar
  3. 3.
    Borgelt, C., Klawonn, F., Kruse, R., Nauck, D.: Neuro-Fuzzy-Systeme. Von den Grundlagen künstlicher Neuronaler Netze zur Kopplung mit Fuzzy-Systemen. Computational Intelligence (2003)Google Scholar
  4. 4.
    Diaconescu, E.: The use of NARX Neural Networks to predict Chaotic Time Series. WSEAS Transactions on Computer Research 3(3), 182–191 (2008)Google Scholar
  5. 5.
    Esmaili, A., Shahbazian, M., Moslemi, B.: Nonlinear process identification using fuzzy wavelet neural network based on particle swarmoptimization algorithm. Journal of Basic Applied Science Research 3(5) (2013)Google Scholar
  6. 6.
    Jang, J.S.R.: Anfs: Adaptive Network based Fuzzy Inference Systems. IEEE Transactions, System, Man & Cybernetics 23(3), 665–685 (1993)CrossRefGoogle Scholar
  7. 7.
    Bodyanskiy, Y., Kokshenev, I., Kolodyazhniy, V.: An Adaptive Learning Algorithm for a Neo-Fuzzy Neuron. In: Proceedings of the 3rd Conference of the European Society for Fuzzy Logic and Technology, pp. 375–379 (2005)Google Scholar
  8. 8.
    Bodyanskiy, Y., Pliss, I., Vynokurova, O.: Flexible Neo-fuzzy Neuron and Neuro-fuzzy Network for Monitoring Time Series Properties. Information Technology and Management Science 16, 47–52 (2013)CrossRefGoogle Scholar
  9. 9.
    Bodyanskiy, Y., Viktorov, Y.: The cascade Neo-Fuzzy architecture and its online learning algorithm. International Book Series Information Science and Computing 17(1), 110–116 (2010)Google Scholar
  10. 10.
    Silva, A.M., Caminhas, W., Lemos, A., Gomide, F.: A fast learning algorithm for evolving Neo-Fuzzy neuron. Applied Soft Computing 14, 194–209 (2014)CrossRefGoogle Scholar
  11. 11.
    Kim, H.D.: Optimal Learning of Neo-Fuzzy Structure Using Bacteria Foraging Optimization. In: Proceedings of the ICCA 2005 (2005)Google Scholar
  12. 12.
    Chaturvedi, K.T., Pandit, M., Srivastava, L.: Modified Neo-Fuzzy neuron-based approach for economic and environmental optimal power dispatch. Applied Soft Computing 8, 1428–1438 (2008)CrossRefGoogle Scholar
  13. 13.
    Camargo, E., Aguilar, J., Rios, A., Rivas, F., Aguilarmartin, J.: A Neo-Fuzzy Approach for Bottom Parameters Estimation in Oil Wells. WSEAS Transactions on Systems and Control 9(4), 445–454 (2009)Google Scholar
  14. 14.
    De Castro, T.N., Souza, F., Alves, J., Pontes, R., Dos Reis, L., Daher, S.: Neo-fuzzy neuron model for seasonal rainfall forecast: A case study of Ceara’s eight homogenous regions. Journal of Intelligent & Fuzzy Systems 25, 389–394 (2013)Google Scholar
  15. 15.
    Zaychenko, Y., Gasanov, A.: Investigations of Cascade Neo-Fuzzy Neural Networks in the Problem of Forecasting at the Stock Exchange. In: Proc. of the IVth IEEE International Conference “Problems of Cybernetics and Informatics” (PCI 2012), pp. 227–229 (2012)Google Scholar
  16. 16.
    Yao, J., Mao, J., Zhang, W.: Application of Fuzzy Tree on Chaotic Time Series Prediction. In: IEEE Proc. of Int. Conf. on Aut. and Logistics, pp. 326–330 (2008)Google Scholar
  17. 17.
    Lai, Y.: Recent developments in chaotic time series analysis. International Journal of Bifurcation and Chaos 13(6), 1383–1422 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Diaconescu, E.: The use of NARX Neural Networks to predict Chaotic Time Series. WSEAS Transactions on Ccomputer Rresearch 3(3), 182–191 (2008)Google Scholar
  19. 19.
    Archana, R., Unnikrishnan, A., Gopikakumari, R.: Bifurcation Analysis of Chaotic Systems using a Model Built on Artificial Neural Networks. In: Proc. of Int. Conf. on Comp. Tech. and Artificial Intelligence, pp. 198–202 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institute of Information and Communication TechnologiesBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Technical University-SofiaPlovdivBulgaria

Personalised recommendations