Sliding Mode Control Scheme of Variable Speed Wind Energy Conversion System Based on the PMSG for Utility Network Connection

  • Youssef Errami
  • Mohammed Ouassaid
  • Mohamed Cherkaoui
  • Mohamed Maaroufi
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 576)

Abstract

The study of a Variable Speed Wind Energy Conversion System (VS-WECS) based on Permanent Magnet Synchronous Generator (PMSG) and interconnected to the electric network is presented. The system includes a wind turbine, a PMSG, two converters and an intermediate DC link capacitor. The effectiveness of the WECS can be greatly improved by using an appropriate control. Furthermore, the system has strong nonlinear multivariable with many uncertain factors and disturbances. Accordingly, the proposed control law combines Sliding Mode Variable Structure Control (SM-VSC) and Maximum Power Point Tracking (MPPT) control strategy to maximize the generated power from Wind Turbine Generator (WTG). Considering the variation of wind speed, the grid-side converter injects the generated power into the AC network, regulates DC-link voltage and it is used to achieve unity power factor, whereas the PMSG side converter is used to achieve Maximum Power Point Tracking (MPPT). Both converters used the sliding mode control scheme considering the variation of wind speed. The employed control strategy can regulate both the reactive and active power independently by quadrature and direct current components, respectively. With fluctuating wind, the controller is capable to maximize wind energy capturing. This work explores a sliding mode control approach to achieve power efficiency maximization of a WECS and to enhance system robustness to parameter variations. The performance of the system has been demonstrated under varying wind conditions. A comparison of simulation results based on SMC and PI controller is provided. The system is built using Matlab/Simulink environment. Simulation results show the effectiveness of the proposed control scheme.

References

  1. Alepuz, S., Calle, A., Busquets-Monge, S., Kouro, S.: Use of stored energy in PMSG rotor inertia for low-voltage ride-through in back-to-back npc converter-based wind power systems. IEEE Trans. Indus. Electr. 60(5), 1787–1796 (2013)CrossRefGoogle Scholar
  2. Alizadeh, O., Yazdani, A.: A strategy for real power control in a direct-drive PMSG-based wind energy conversion system. IEEE Trans. Power Delivery 28(3), 1297–1305 (2013)CrossRefGoogle Scholar
  3. Alshibani, S., Agelidis, V.G., Dutta, R.: Lifetime cost assessment of permanent magnet synchronous generators for MW level wind turbines. IEEE Trans. Sustain. Energy 5(1), 10–17 (2014)CrossRefGoogle Scholar
  4. Blaabjerg, F., Ma, K.: Future on power electronics for wind turbine systems. IEEE J. Emerg. Sel. Topics Power Electr. 1(3), 139–152 (2013)CrossRefGoogle Scholar
  5. Bouaziz, B., Bacha, F.: Direct power control of grid-connected converters using sliding mode controller. In: IEEE International Conference on Electrical Engineering and Software Applications (ICEESA), pp. 1–6 (2013)Google Scholar
  6. Cárdenas, R., Peña, R., Alepuz, S., Asher, G.: Overview of control systems for the operation of DFIGs in wind energy applications. IEEE Trans. Ind. Electr. 60(7), 2776–2798 (2013)CrossRefGoogle Scholar
  7. Cespedes, M., Sun, J.: Impedance modeling and analysis of grid-connected voltage-source converters. IEEE Trans. Power Electr. 29(3), 1254–1261 (2014)CrossRefGoogle Scholar
  8. Che, H., Levi, Emil, Jones, Martin, Duran, Mario J., Hew, Wooi-Ping, Abd, Nasrudin, Rahim, : Operation of a Six-Phase Induction Machine Using Series-Connected Machine-Side Converters. IEEE Transactions On Industrial Electronics 61(1), 164–176 (2014)Google Scholar
  9. Chen, B., Ong, F., Minghao, Z.: Terminal sliding-mode control scheme for grid-side PWM converter of DFIG-based wind power system. In: IEEE Conference of the Industrial Electronics Society (IECON), pp. 8014–8018 (2013)Google Scholar
  10. Chen, H., David, N., Aliprantis, D.C.: Analysis of permanent-magnet synchronous generator with vienna rectifier for wind energy conversion system. IEEE Trans. Sustain. Energy 4(1), 154–163 (2013)CrossRefGoogle Scholar
  11. Chen, J., Jie, C., Chunying, G.: New overall power control strategy for variable-speed fixed-pitch wind turbines within the whole wind velocity range. In: IEEE Transactions On Industrial Electronics, Vol. 60, No. 7, pp. 2652–2660 (2013a)Google Scholar
  12. Chen, J., Jie, C., Chunying, G.: On optimizing the aerodynamic load acting on the turbine shaft of PMSG-based direct-drive wind energy conversion system. In: IEEE Transactions on Industrial Electronics, vol 99 (2013b)Google Scholar
  13. Chen, J., Jie, C.M., Chunying, G.: On optimizing the transient load of variable-speed wind energy conversion system during the MPP tracking process. In: IEEE Transactions On Industrial Electronics, Vol. 99, pp. 1–9 (2013c)Google Scholar
  14. Cheng, K.W.E., Lin J.K., Bao, Y.J., Xue, X.D.: ReView of the wind energy generating system. In: International Conference on Advances in Power System Control, Operation and Management (APSCOM 2009), pp. 1–7, (2009)Google Scholar
  15. Chou, S., Chia-Tse, L., Hsin-Cheng, K., Po-Tai, C.: A low-voltage ride-through method with transformer flux compensation capability of renewable power grid-side converters. In: IEEE Transactions On Power Electronics, Vol. 29, No. 4, pp. 1710–1719 (2014)Google Scholar
  16. Corradini, M.L., Ippoliti, G., Orlando, G.: Robust control of variable-speed wind turbines based on an aerodynamic torque observer. IEEE Trans. Control Syst. Technol. 21(4), 1199–1206 (2013)CrossRefGoogle Scholar
  17. Elkhatib, K., Aitouche, A., Ghorbani, R., Bayart, M.: Fuzzy Scheduler fault-tolerant control for wind energy conversion systems. IEEE Trans. Control Syst. Technol. 22(1), 119–131 (2014)CrossRefGoogle Scholar
  18. Errami, Y., Ouassaid, M., Maaroufi, M.: A MPPT vector control of electric network connected wind energy conversion system employing PM synchronous generator. In: IEEE International Renewable and Sustainable Energy Conference (IRSEC), pp. 228–233 (2013)Google Scholar
  19. Evangelista, C., Fernando, V., Paul, P.: Active and reactive power control for wind turbine based on a MIMO 2-sliding mode algorithm with variable gains. In: IEEE Transactions On Energy Conversion, Vol. 28, No. 3, pp. 682–689 (2013b)Google Scholar
  20. Evangelista, C., Puleston, P., Valenciaga, F., Fridman, L.M.: Lyapunov-designed super-twisting sliding mode control for wind energy conversion optimization. IEEE Trans. Indust. Electr. 60(2), 538–545 (2013)Google Scholar
  21. Giraldo, E., Garces, A.: An Adaptive control strategy for a wind energy conversion system based on PWM-CSC and PMSG. IEEE Trans. Power Syst. textbf99, 1–8 (2013)Google Scholar
  22. Guo, X., Zhang, X., Wang, B., Guerrero, J.M.: Asymmetrical grid fault ride-through strategy of three-phase grid-connected inverter considering network impedance impact in low-voltage grid. IEEE Trans. Power Electr. 29(3), 1064–1068 (2014)CrossRefGoogle Scholar
  23. Guzman, R., de Luís G., Vicuña, Antonio, C., José, M., Miguel, C., Jaume, M.: Active damping control for a three phase grid- connected inverter using sliding mode control. In: IEEE Conference of the Industrial Electronics Society (IECON), pp. 382 (2013)–387.Google Scholar
  24. Harrouz, A., Benatiallah, A., Moulay Ali, A., Harrouz, O.: Control of machine PMSG dedicated to the conversion of wind power off-grid. In: IEEE International Conference on Power Engineering, Energy and Electrical Drives Istanbul, pp. 1729–1733 (2013)Google Scholar
  25. He, J., Li, Y.W., Blaabjerg, F., Wang, X.: Active harmonic filtering using current-controlled, grid-connected dg units with closed-loop power contro. IEEE Trans. Power Electr. 29(2), 642–653 (2014)Google Scholar
  26. He, L., Li, Y., Harley, R.G.: Adaptive multi-mode power control of a direct-drive PM wind generation system in a microgrid. IEEE J. Emerg. Sel. Topics Power Electr. 1(4), 217–225 (2013)CrossRefGoogle Scholar
  27. Huang, N., He, J., Nabeel, A., Demerdash, O.: Sliding Mode observer based position self-sensing control of a direct-drive PMSG wind turbine system fed by NPC converters. In: IEEE International Electric Machines Drives Conference (IEMDC), pp. 919–925 (2013)Google Scholar
  28. Karthikeya, B.R., Schütt, R.J.: Overview of wind park control strategies. IEEE Trans. Sustain. Energy 99, 1–7 (2014)Google Scholar
  29. Kuschke, M., Strunz, K.: Energy-efficient dynamic drive control for wind power conversion with PMSG: modeling and application of transfer function analysis. IEEE J. Emerg. Sel. Top. Power Electron. 2(1), 35–46 (2014)CrossRefGoogle Scholar
  30. Leonhard, W.: Control of Electric Drives. Springer, London (1990)Google Scholar
  31. Li, R., Dianguo, X.: Parallel operation of full power converters in permanent-magnet direct-drive wind power generation system. IEEE Trans. Industr. Electron. 60(4), 1619–1629 (2013)CrossRefGoogle Scholar
  32. Li, S., Du, H., Yu, X.: Discrete-time terminal sliding mode control systems based on Euler’s discretization. IEEE Trans. Autom. Control, 99 (2013a)Google Scholar
  33. Li, S., Zhou, M., Yu, X.: Design and implementation of terminal sliding mode control method for PMSM speed regulation system. IEEE Trans. Indust. Inform. 9(4) 1879–1891 (2013b)Google Scholar
  34. Li, S., Haskew, T.A., Swatloski, R.P., Gathings, W.: Optimal and direct-current vector control of direct-driven PMSG wind turbines. IEEE Trans. Power Electr. 27(5), 2325–2337 (2012)CrossRefGoogle Scholar
  35. Ma, K., Blaabjerg, F.: Modulation methods for neutral-point-clamped wind power converter achieving loss and thermal redistribution under low-voltage ride-through. IEEE Trans. Indus. Electr. 61(2), 835–845 (2014)CrossRefGoogle Scholar
  36. Ma, K., Marco, L., Frede, B.: Comparison of multi-MW converters considering the determining factors in wind power application. IEEE Energy Conversion Congress and Exposition (ECCE), pp. 4754–4761 (2013)Google Scholar
  37. Martinez, M.I., Susperregui, A., Tapia, G.: Sliding-mode control of a wind turbine-driven double-fed induction generator under non-ideal grid voltages. IET Renew. Power Gener. 7(4), 370–379 (2013)CrossRefGoogle Scholar
  38. Melo, D.F.R., Chang-Chien, L.-R.: Synergistic control between hydrogen storage system and offshore wind farm for grid operation. IEEE Trans. Sustain. Energy 5(1), 18–27 (2014)CrossRefGoogle Scholar
  39. Meng, W., Yang, Q., Ying, Y., Sun, Y., Yang, Z., Sun, Y.: Adaptive power capture control of variable-speed wind energy conversion systems with guaranteed transient and steady-state performance. IEEE Trans. Energy Convers, 28(3), 716–725 (2013)CrossRefGoogle Scholar
  40. Najafi, P., Rajaei, A., Mohamadian, M., Varjani, A.Y.: Vienna rectifier and B4 inverter as PM WECS grid interface. In: IEEE Conference on Electrical Engineering (ICEE), pp. 1–5 (2013)Google Scholar
  41. Nguyen, T.H., Lee, D.-C., Kim, C.-K.: A series-connected topology of a diode rectifier and a voltage-source converter for an HVDC transmission system. IEEE Trans. Power Electron. 29(4), 1579–1584 (2014)CrossRefGoogle Scholar
  42. Nguyen, T., Lee, D.-C.: Advanced fault ride-through technique for PMSG wind turbine systems using line-side converter as STATCOM. IEEE Trans. Indust. Electr. 60(7), 2842–2850 (2013)CrossRefGoogle Scholar
  43. Nian, H., Song, Y.: Direct power control of doubly fed induction generator under distorted grid voltage. IEEE Trans. Power Electr. 29(2), 894–905 (2014)CrossRefGoogle Scholar
  44. Nuno, M.A.F., Marques, António J.C.: A Fault-tolerant direct controlled PMSG drive for wind energy conversion systems. IEEE Trans. Indust. Electr. 61(2), 821–834 (2014)Google Scholar
  45. Orlando, N.A., Liserre, M., Mastromauro, R.A., Dell’Aquila, A.: A survey of control issues in PMSG-based small wind-turbine systems. IEEE Trans. Indust. Inf. 9(3), 1211–1221 (2013)CrossRefGoogle Scholar
  46. Patil, N.S., Bhosle, Y.N.: A review on wind turbine generator topologies. In: IEEE International Conference on Power, Energy and Control (ICPEC), pp. 625–629 (2013)Google Scholar
  47. Polinder, H., Bang, D., R.P.J.O.M., van Rooij, McDonald, A.S., Mueller, M.A.: 10 MW wind turbine direct-drive generator design with pitch or active speed stall control. In: IEEE International Conference On Electric Machines & Drives(IEMDC’07), Vol. 2, pp. 1390–1395 (2007)Google Scholar
  48. Rajaei, A.H., Mohamadian, M., Varjani, A.Y.: Vienna-rectifier-based direct torque control of PMSG for wind energy application. IEEE Trans. Indust. Electr. 60(7), 2919–2929 (2013)CrossRefGoogle Scholar
  49. Sabanovic, K.J., Sabanovic, N.: Sliding modes applications in power electronics and electrical drives in Variable Structure Systems. Towards the 21st Century, vol. 274. Springer, New York, pp. 223–251. (2002)Google Scholar
  50. Shariatpanah, H., Fadaeinedjad, R., Rashidinejad, M.: A new model for PMSG-based wind turbine with yaw control. IEEE Trans. Energy Convers. 28(4), 929–937 (2013)Google Scholar
  51. She, X., Huang, A.Q., Wang, F., Burgos, R.: Wind energy system with integrated functions of active power transfer, reactive power compensation, and voltage conversion. IEEE Trans. Indust. Electr. 60(10), 4512–4524 (2013)CrossRefGoogle Scholar
  52. Slotine, J.E., Li, W.: Applied Nonlinear Control. Prentice Hall, New Jersey (1991)MATHGoogle Scholar
  53. Spruce, C.J., Judith, K.T.: Tower vibration control of active stall wind turbines. IEEE Trans. Control Syst. Technol. 21(4), 1049–1066 (2013)Google Scholar
  54. Subudhi, B., Pedda, S.O.: Sliding Mode Approach to Torque and Pitch Control for a Wind Energy System. IEEE India Conference (INDICON), pp. 244–250 (2012)Google Scholar
  55. Susperregui, A., Martinez, M.I., Tapia, G., Vechiu, I.: Second-order sliding-mode controller design and tuning for grid synchronisation and power control of a wind turbine-driven doubly fed induction generator. IET Renew. Power Gener. 7(5), 540–551 (2013)CrossRefGoogle Scholar
  56. Li, T., Zou, X., Shushuai F., Yu., C., Yong, K., Huang, Q., Huang, Y.: SRF-PLL-Based Sensor-less Vector Control Using Predictive Dead-beat Algorithm for Direct Driven Permanent Magnet Synchronous Generator (PMSG), p. 99. IEEE Trans. Power Electron. (2013)Google Scholar
  57. Tseng, K., Huang, C.-C.: High step-up high-efficiency interleaved converter with voltage multiplier module for renewable energy system. IEEE Trans. Indust. Electr. 61(3), 1311–1319 (2014)CrossRefGoogle Scholar
  58. Utkin, V.I., Guldner, J., Shi, J.: Sliding Mode Control in Electromechanical Systems. CRC Press, Boca Raton, FL, USA (1999)Google Scholar
  59. Utkin, V.I.: Sliding mode control design principles and applications to electrical drives. IEEE Trans. Indust. Electr. 40(1), 23–36 (1993)CrossRefGoogle Scholar
  60. Vazquez, S., Sanchez, J.A., Reyes, M.R., Leon, J.I., Carrasco, J.M.: Adaptive vectorial filter for grid synchronization of power converters under unbalanced and/or distorted grid conditions. IEEE Trans. Indust. Electr. 61(3), 1355–1367 (2014)CrossRefGoogle Scholar
  61. Wang, L., Thi, M.S.-N.: Stability enhancement of large-scale integration of wind, solar, and marine-current power generation fed to an SG-based power system through an LCC-HVDC link. IEEE Trans. Sustain. Energy 5(1), 160–170 (2014)CrossRefGoogle Scholar
  62. Xia, C., Wang, Z., Shi, T., Song, Z.: A novel cascaded boost chopper for the wind energy conversion system based on the permanent magnet synchronous generator. IEEE Trans. Energy Convers. 28(3), 512–522 (2013)CrossRefGoogle Scholar
  63. Xiao, L., Shoudao, H., Lei, Z., Xu, Q., Huang, K.: Sliding mode SVM-DPC for grid-side converter of D-PMSG under asymmetrical faults. In: IEEE International Conference on Electrical Machines and Systems (ICEMS), pp. 1–6 (2011)Google Scholar
  64. Xiao, S., Geng, Y., Hua, G.:Individual pitch control design of wind turbines for load reduction using sliding mode method. In: IEEE International Energy Conversion Congress and Exhibition ECCE Asia Downunder (ECCE Asia), pp. 227–232 (2013)Google Scholar
  65. Xin, W., Cao, M., Li, Q., Chai, L., Qin, B.: Control of direct-drive permanent-magnet wind power system grid-connected using back-to-back PWM converter. In: IEEE International Conference on Intelligent System Design and Engineering Applications, pp. 478–481 (2013)Google Scholar
  66. Yaramasu, V., Bin, W.: Predictive Control of Three-Level Boost Converter and NPC Inverter for High Power PMSG-Based Medium Voltage Wind Energy Conversion Systems. In: IEEE Transactions on Power Electronics, p. 99 (2013)Google Scholar
  67. Yaramasu, V., Wu, B., Rivera, M., Rodriguez, J.: A new power conversion system for megawatt PMSG wind turbines using four-level converters and a simple control scheme based on two-step model predictive strategy—Part II: simulation and experimental analysis. IEEE J. Emerg. Select. Topics Power Electr. pp. 99 (2013)Google Scholar
  68. Zhang, Y., Hu, J., Zhu, J.: Three vectors based predictive direct power control of doubly fed induction generator for wind energy applications. In: IEEE Transactions on Power Electronics pp. 99 (2013)Google Scholar
  69. Zhang, Z., Zhao, V., Wei, Q., Qu, L.: A Discrete-Time direct-torque and flux control for direct-drive PMSG wind turbines. In: IEEE Industry Applications Society Annual Meeting, pp. 1–8 (2013)Google Scholar
  70. Zhang, Z., Zhao, Y., Qiao, W., Qu, L.: A space-vector modulated sensorless direct-torque control for direct-drive PMSG wind turbines. In: IEEE Transactions on Industry Applications, p. 99 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Youssef Errami
    • 1
  • Mohammed Ouassaid
    • 2
  • Mohamed Cherkaoui
    • 3
  • Mohamed Maaroufi
    • 3
  1. 1.Department of Physical, Faculty of ScienceUniversity Chouaib DoukkaliEljadidaMorocco
  2. 2.Department of Industrial EngineeringEcole Nationale des Sciences Appliquées-Safi, Cadi Ayyad UniversitySafiMorocco
  3. 3.Department of Electrical EngineeringEcole Mohammadia D’Ingénieur, Mohammed V-Agdal UniversityRabatMorocco

Personalised recommendations