Advertisement

Transient Stability Enhancement of Power Systems Using Observer-Based Sliding Mode Control

  • M. OuassaidEmail author
  • M. Maaroufi
  • M. Cherkaoui
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 576)

Abstract

The high complexity and nonlinearity of power systems, together with their almost continuously time-varying nature, have presented a big challenge for control engineers, for decades. The disadvantages of the linear controllers/models, such as being dependent on the operating condition, sensibility to the disturbance such as parametric variations or faults can be overcome by using appropriate nonlinear control techniques. Sliding-mode control technique has been extensively used when a robust control scheme is required. This chapter presents the transient stabilization with voltage regulation analysis of a synchronous power generator driven by steam turbine and connected to an infinite bus. The aim is to obtain high performance for the terminal voltage and the rotor speed simultaneously under a large sudden fault and a wide range of operating conditions. The methodology adopted is based on sliding mode control technique. First, a nonlinear sliding mode observer for the synchronous machine damper currents is proposed. Next, the control laws of the complete ninth order model of a power system, which takes into account the stator dynamics as well as the damper effects, are developed. They are shown to be asymptotically stable in the context of Lyapunov theory. Finally, the effectiveness of the proposed combined observer-controller for the transient stabilization and voltage regulation is demonstrated.

Keywords

Power system Transient stability Sliding mode control Damper current observer 

Nomenculture

\({v}_{d}{,v}_{q}\)

Direct and quadrature axis stator terminal voltage components, respectively

\({v}_{fd}\)

Excitation control input

\({v}_{t}\)

Terminal voltage

\(i_{d}{,i}_{q}\)

Direct and quadrature axis stator current components, respectively

\(i_{fd}\)

Field winding Current

\(i_{kd}{,i}_{kq}\)

Direct and quadrature axis damper winding current components, respectively

\(\lambda _{d}{,\lambda }_{q}\)

Direct and quadrature axis flux linkages, respectively

\(R_{s}\)

Stator resistance

\(R_{fd}\)

Field resistance

\(R_{kd}{,R}_{kq}\)

Damper winding resistances

\({L}_{d}{,L}_{q}\)

Direct and quadrature self inductances, respectively

\(L_{fd}\)

Rotor self inductance

\(L_{kd}{,L}_{kq}\)

Direct and quadrature damper winding self inductances, respectively

\(L_{md}{,L}_{mq}\)

Direct and quadrature magnetizing inductances, respectively

\(\omega \)

Angular speed of the generator

\(\delta \)

Rotor angle of the generator

\({T}_{m}\)

Mechanical torque

\(T_{e}\)

Electromagnetic torque

D

Damping constant

H

Inertia constant

a

Phase angle of infinite bus voltage

\({V}^{\propto }\)

Infinite bus voltage

\(L_{e}\)

Inductance of the transmission line

\(R_{e}\)

Resistance of the transmission line

References

  1. Abbadi, A., Nezli, L., Boukhetala, D.: A nonlinear voltage controller based on interval type 2 fuzzy logic control system for multi-machine power systems. Int. J. Electr. Power Energy Syst. 45(1), 456–467 (2013)Google Scholar
  2. Ahmed, S.S., Chen, L., Petroianu, A.: Design of suboptimal H\(\infty \) excitation controllers. IEEE Trans. Power Syst. 11(21), 312–318 (1996)CrossRefGoogle Scholar
  3. Akhrif, O., Okou, F.A., Dessaint, L.A., Champagne, R.: Application of mulitivariable feedback linearization scheme for rotor angle stability and voltage regulation of power systems. IEEE Trans. Power Syst. 14(2), 620–628 (1999)CrossRefGoogle Scholar
  4. Alkhatib, H., Duveau, J.: Dynamic genetic algorithms for robust design of multi-machine power system stabilizers. Int. J. Electr. Power Energy Syst. 45(1), 242–245 (2013)CrossRefGoogle Scholar
  5. Anderson, P.M., Fouad, A.A.: Power System Control and Stability. IEEE Press, New York (1994)Google Scholar
  6. Astrom K.J., Wittenmark, B.: Adaptive Control, 2nd edn. Addison-Wesley Publishing Company, Chicago (1995)Google Scholar
  7. Byrnes, C.I., Isidori, A., Willems, J.C.: Passivity, feedback equivalence, and the global stabilization of minimum phase non linear systems. IEEE Trans. Autom. Control 36(11), 1228–1240 (1991)CrossRefMathSciNetzbMATHGoogle Scholar
  8. Cabrera-Vazquez, J., Loukianov, A.G., Canedo, J.M., Utkin, V.I.: Robust controller for synchronous generator with local load via VSC. Int. J. Electr. Power. Energy Syst. 29(4), 348–359 (2007)CrossRefGoogle Scholar
  9. Cheng, C.H., Hsu, Y.Y.: Damping of generator oscillation using an adaptive static var compensator. IEEE Trans. Power Syst. 7(2), 718–724 (1992)CrossRefGoogle Scholar
  10. Colbia-Vega, de Léon-Morales, J., Fridman, L., Salas-Péna, O., Mata-Jiménez, M.T.: Robust excitation control design using sliding-mode technique for multimachine power systems. Electr. Power Syst. Res. 78(9), 1627–1643 (2008)Google Scholar
  11. De Mello, F.P.: Measurement of synchronous machine rotor angle from analysis of zero sequence harmonic components of machine terminal voltage. IEEE Trans. Power Deliv. 9(4), 1770–1777 (1994)CrossRefMathSciNetGoogle Scholar
  12. Galaz, M., Ortega, R., Bazanella, A.S., Stankovic, A.M.: An energy-shaping approach to the design of excitation control of synchronous generators. Automatica 39(1), 111–119 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  13. Gao, L., Chen, L., Fan, Y., Ma, H.: A nonlinear control design for power systems. Automatica 28(5), 975–979 (1992)Google Scholar
  14. Ghandakly, A., Dai, J.: An adaptive synchronous generator stabilizer design by generalized multivariable pole shifting (GMPS) technique. IEEE Trans. Power Syst. 7(3), 436–446 (2000)Google Scholar
  15. Ghandakly, Adel, A., Farhoud, A. M.: A parametrically optimized self tuning regulator for power system stabilizers. IEEE Trans. Power Syst. 7(3), 1245–1250 (1992)Google Scholar
  16. Ghazizadeh, M.S., Hughes, F.M.: A generator transfer function regulator for improved excitation control. IEEE Trans. Power Syst. 13(2), 437–441 (1998)CrossRefGoogle Scholar
  17. Guo, Y., Hill, D.J., Wang, Y.: Global transient stabilility and voltage regulation for power systems. IEEE Trans. Power Syst. 16(4), 678–688 (2001)CrossRefGoogle Scholar
  18. Hill, D.J., Wang, Y.: Nonlinear decentralized control of large scale power systems. Automatica 36(9), 1275–1289 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  19. Huerta, H., Alexander, G., Loukianov, Cañedo, J. M.: Decentralized sliding mode block control of multimachine power systems. Int. J. Electr. Power Energy Syst. 32(1), 1–11 (2010)Google Scholar
  20. Isidori, A.: Nonlinear Control Systems, 3rd edn. Springer, New York (1995)CrossRefzbMATHGoogle Scholar
  21. Jain, S., Khorrami, F., Fardanesh, B.: Adaptive nonlinear excitation control of power system with unknown interconnections. IEEE Trans. Control Syst. Technol. 2(4), 436–446 (1994)CrossRefGoogle Scholar
  22. Jiao, X., Sun, Y., Shen, T.: Adaptive controller design for a synchronous generator with unknown perturbation in mechanical power. Int. J. Control Autom. Syst. 3(2), 308–314 (2005)Google Scholar
  23. Jiawei, Y., Zhu, C., Chengxiong, M., Dan, W., Jiming, L., Jianbo, S., Miao, L., Dah, L., Xiaoping, L.: Analysis and assessment of VSC excitation system for power system stability enhancement. Int. J. Electr. Power Energy Syst. 7(5), 350–357 (2014)Google Scholar
  24. Karimi, A., Feliachi, A.: Decentralized adaptive backstepping of electric power systems. Electr. Power Syst. Res. 78(3), 484–493 (2008)CrossRefGoogle Scholar
  25. Khorrami, F., Jain, S., Fardanesh, B.: Adaptive nonlinear excitation control of power system with unknown interconnections. IEEE Trans. Control Syst. Technol. 2(4), 436–446 (1994)CrossRefGoogle Scholar
  26. King, C.A., Chapman, J.W., Ilic, M.D.: Feedback linearizing excitation control on a full-scale power system model. IEEE Trans. Power Syst. 9(2), 1102–1109 (1994)CrossRefGoogle Scholar
  27. Kokotovic, P.V.: The joy of feedback: non-linear and adaptive. IEEE Control Syst. Mag. 12(3), 7–17 (1992)CrossRefGoogle Scholar
  28. Krstić, M., Kanellakopoulos, I., Kokotović, P.: Nonlinear and adaptive control design. Wiley Interscience Publication, New York (1995)Google Scholar
  29. Kundur, G.P.: Power System Stability and Control. McGraw- Hill, New York (1994)Google Scholar
  30. Loukianov, A.G., Canedo, J.M., Utkin, V.I., Cabrera-Vazquez, J.: Discontinuous controller for power systems: sliding mode block control approach. IEEE Trans. Ind. Electron. 51(2), 340–353 (2004)CrossRefGoogle Scholar
  31. Mohagheghi, S., Valle, Y., Venayagamoorthy, G.K., Harley, R.G.: A proportional-integrator type adaptive critic design-based neuro-controller for a static compensator in a multimachine power system. IEEE Trans. Ind. Electron. 54(1), 86–96 (2007)CrossRefGoogle Scholar
  32. Morales, J.D., Busawon, K., Acosta-Villarreal, G., Acha- daza, S.: Nonliear control for small synchronous generator. Int. J. Electr. Power Energy Syst. 23(1), 1–11 (2001)Google Scholar
  33. Mrad, F., Karaki, S., Copti, B.: An adaptive fuzzy-synchronous machine stabilizer. IEEE Trans. Syst. Man Cybern Part C 30(1), 131–137 (2000)CrossRefGoogle Scholar
  34. Narendra, K.S., Balakrishnan, J.: Adaptive control using multiple models. IEEE Trans. Autom. Control 42(2), 171–187 (1997)CrossRefMathSciNetzbMATHGoogle Scholar
  35. Nickllasson, P.J., Ortega, R., Espinosa Perez, G.: Passivity-based control of a class of Blondel-Park transformable electric machines. IEEE Trans. Autom. Control 42(5), 629–649 (1997)Google Scholar
  36. Ohtsuk, K., Taniguchi, T., Sato, T.: A H\(\infty \) optimal theory based generator control system. IEEE Trans. Power Syst. 7(1), 108–113 (1992)CrossRefGoogle Scholar
  37. Ortega, R., Lorı’a, A., Nicklasson, P., Sira-Ramıre, H.: Passivity-Based Control of Euler-Lagrange Systems. Springer, London (1998)CrossRefGoogle Scholar
  38. Ouassaid, M., Nejmi, A., Cherkaoui, M., Maaroufi, M.: A Nonlinear backstepping controller for power systems terminal voltage and rotor speed controls. Int. Rev. Autom. Control. 3(1), 355–363 (2008)Google Scholar
  39. Ouassaid, M., Maaroufi, M., Cherkaoui, M.: Decentralized nonlinear adaptive control and stability analysis of multimachine power system. Int. Rev. Electr. Eng. 5(6), 2754–2763 (2010)Google Scholar
  40. Ouassaid, M., Maaroufi, M., Cherkaoui, M.: Observer based nonlinear control of power system using sliding mode control strategy. Electr. Power Syst. Res. 84(1), 153–143 (2012)CrossRefGoogle Scholar
  41. Park, J.W., Harley, R.G., Venayagamoorthy, G.K.: Adaptive-critic-based optimal neurocontrol for synchronous generators in a power system using MLP/RBF neural networks. IEEE Trans. Ind. Appl. 39(5), 1529–1540 (2003)CrossRefGoogle Scholar
  42. Segal, R., Kothari, M.L., Madnani, S.: Radial basis function (RBF) network adaptive power system stabilizer. IEEE Trans. Power Syst. 15(2), 722–727 (2000)CrossRefGoogle Scholar
  43. Shamsollahi, P., Malik, O.P.: An adaptive power system stabilizer using on-line trained neural network. IEEE Trans. Energy Convers. 12(4), 382–389 (1997)CrossRefGoogle Scholar
  44. Shen, T., Mei, S., Lu, Q., Hu, W., Tamura, K.: Adaptive nonlinear excitation control with L2 disturbance attenuation for power systems. Automatica 39(1), 81–89 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  45. Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Prentice-Hall, Englewoods Cliffs (1991)zbMATHGoogle Scholar
  46. Tan, Y., Wang, Y.: Augmentation of transient stability using a supperconduction coil and adaptive nonlinear control. IEEE Trans. Power Syst. 13(2), 361–366 (1998)CrossRefGoogle Scholar
  47. Utkin, V.I.: Variable structure systems with sliding modes. IEEE Trans. Autom. Control 22(2), 212–222 (1977)CrossRefMathSciNetzbMATHGoogle Scholar
  48. Utkin, V.I., Guldner, J., Shi, J.: Sliding Mode Control in Electromechanical Systems. Taylor and Francis, London (1999)Google Scholar
  49. Venayagamoorthy, G.K., Harley, R.G., Wunsch, D.C.: Dual heuristic programming excitation neurocontrol for generators in a multimachine power system. IEEE Trans. Ind. Appl. 39(2), 382–394 (2003)CrossRefGoogle Scholar
  50. Wang, S.K.: A novel objectif function and algorithm for optimal PSS parameter design in a multi-machine power system. IEEE Trans. Power Syst. 28(1), 522–531 (2013)CrossRefGoogle Scholar
  51. Wang, Y., Cheng, D., Li, C., Ge, Y.: Dissipative Hamiltonian realization and energybased L2-disturbance attenuation control of multimachine power systems. IEEE Trans. Autom. Control 48(8), 1428–1433 (2003)CrossRefMathSciNetGoogle Scholar
  52. Wu, B., Malik, O.P.: Multivariable adaptive control of synchronous machines in a multimachine power system. IEEE Trans. Power Syst. 21(2), 1772–1787 (2006)CrossRefGoogle Scholar
  53. Xi, Z., Cheng, D., Lu, Q., Mei, S.: Nonlinear decentralized controller design for multimachine power systems using Hamiltonian function method. Automatica 38(2), 527–534 (2002)CrossRefzbMATHGoogle Scholar
  54. Zhao, Q., Jiang, J.: Robust controller design for generator excitation systems. IEEE Trans. Energy Convers. 28(2), 201–207 (1995)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Cadi Ayyad UniversitySafiMorocco
  2. 2.Mohammed V UniversityRabatMorocco

Personalised recommendations