Advertisement

BarCamp: Technology Foresight and Statistics for the Future

  • Laura Azzimonti
  • Marzia A. Cremona
  • Andrea Ghiglietti
  • Francesca IevaEmail author
  • Alessandra Menafoglio
  • Alessia Pini
  • Paolo Zanini
Chapter
Part of the Contributions to Statistics book series (CONTRIB.STAT.)

Abstract

Barcamp is quite a new event for the scientific and technological community. In full generality, it is an “unconference”, a meeting where everyone can contribute, presenting a topic and generating a discussion. In this paper, we propose the BarCamp as an innovative way of producing and communicating statistical knowledge, and we describe the experiment held at Politecnico di Milano, entitled “Technology Foresight and Statistics for the Future”.

Keywords

Computational Statistics Statistical Knowledge Round Table Graphical Communication Curve Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

BarCamp is one of the activities planned for celebrating the 150th anniversary of Politecnico di Milano. The authors wish to thank the organizers of S.Co. Conference and the Department of Mathematics of Politecnico di Milano.

References

  1. 1.
    Arnall, T., Knutsen, J., Martinussen, E.S.: Immaterials: light painting WiFi. Significance 10(4), 38–39 (2013) doi:10.1111/j.1740-9713.2012.00623.xCrossRefGoogle Scholar
  2. 2.
    Barbieri, P., Grieco, N., Ieva, F., Paganoni, A.M., Secchi, P.: Exploitation, integration and statistical analysis of Public Health Database and STEMI archive in Lombardia Region. In: Mantovan, P., Secchi, P. (eds.) Complex Data Modeling and Computationally Intensive Statistical Methods. Series Contribution to Statistics, pp. 41–56. Springer, Milan (2010). ISBN 978-88-470-1386-5CrossRefGoogle Scholar
  3. 3.
    BarCamp - Technology Foresights and Statistics for the Future. Agora’ di Architettura, Politecnico di Milano, Milano, 12 September 2013. http://www1.mate.polimi.it/barcamp2013/ (2014). Accessed 5 Jan 2014
  4. 4.
  5. 5.
    Bateman, S., Mandryk, R. L., Gutwin, C., Genest, A., McDine, D., Brooks, C.: Useful junk? The effects of visual embellishment on comprehension and memorability of charts. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2573–2582 (2010)Google Scholar
  6. 6.
    Boyd, D., Crawford, K.: Critical questions for big data. Inf. Commun. Soc. 15(5), 662–679 (2012). doi:10.1080/1369118X.2012.678878CrossRefGoogle Scholar
  7. 7.
    Chambers, J.: Software for Data Analysis, Programming with R. Springer, New York (2008)CrossRefzbMATHGoogle Scholar
  8. 8.
    Champkin, J.: 2008 movies, by Graham Wills. Significance 9, 36–37 (2012). doi:10.1111/j.1740-9713.2012.00607.xCrossRefGoogle Scholar
  9. 9.
    Datta, S., Datta, S., Kim, S., Chakraborty, S., Gill, R.S.: Statistical analyses of next generation sequence data: a partial overview. J. Proteom. Bioinform. 3(6), 183–190 (2010)CrossRefGoogle Scholar
  10. 10.
    Facebook is collecting your data – 500 terabytes a day. http://gigaom.com/2012/08/22/facebook-is-collecting-your-data-500-terabytes-a-day/ (2014)
  11. 11.
  12. 12.
    Facebook Tackles (Really) Big Data With “Project Prism”. http://www.wired.com/2012/08/facebook-prism/ (2014)
  13. 13.
    Foster, P., Fawcet, T.: Data science and its relationship to big data and data driven decision making. Big Data 1(1) (2013). doi:10.1089/big.2013.1508Google Scholar
  14. 14.
    Gelman, A., Unwin, A.: Infovis and statistical graphics: different goals, different looks. J. Comput. Graph. Stat. 22(1), 2–28 (2013). doi:10.1080/10618600.2012.761137CrossRefMathSciNetGoogle Scholar
  15. 15.
    Grasso, M., Goletti, M., Annoni, M., Colosimo, B.M.: A new approach for online health assessment of abrasive waterjet cutting systems. Int. J. Abrasive Technol 6(2), 158–181 (2013)CrossRefGoogle Scholar
  16. 16.
    Hullman, J., Adar, E., Shah, P.: Benefitting infovis with visual difficulties. IEEE Trans. Visual. Comput. Graph. 17(12), 2213–2222 (2011)CrossRefGoogle Scholar
  17. 17.
    Ieva, F., Paganoni, A.M., Secchi, P.: Mining administrative health databases for epidemiological purposes: a case study on acute myocardial infarctions diagnoses. In: Pesarin, F., Torelli, N. (eds.) Advances in Theoretical and Applied Statistics, chap. 38, pp. 417–426. Springer, Berlin, Heidelberg (2013)CrossRefGoogle Scholar
  18. 18.
    Liddy, E.D., Stanton, J., Mueller, K., Farnham, S.: Educating the next generation of data scientist. Big Data 1(1) (2013). doi:10.1089/big.2013.1510Google Scholar
  19. 19.
    Martinussen, E.S.: Immaterials: Light painting WiFi, YOUrban. http://yourban.no/2011/02/22/immaterials-light-painting-wifi/ (2011)
  20. 20.
    Martinussen, E.S.: Making material of the networked city. In: Design Innovation for the Built Environment – Research by Design and the Renovation of Practice. Taylor & Francis, Routledge (2011)Google Scholar
  21. 21.
    Menafoglio, A., Secchi, P., Dalla Rosa, M.: A universal kriging predictor for spatially dependent functional data of a hilbert space. Electron. J. Stat. 10, 2209–2240 (2013)CrossRefGoogle Scholar
  22. 22.
    Menafoglio, A., Guadagnini, A., Secchi P.: A kriging approach based on aitchison geometry for the characterization of particle-size curves in heterogeneous aquifers. Stoch. Environ. Res. Risk. A (2014). doi:10.1007/s00477-014-0849-8Google Scholar
  23. 23.
    Mymovies: http://mymovies.it/ (2012)
  24. 24.
    Pini, A., Vantini, S.: The interval testing procedure: inference for functional data controlling the family wise error rate on intervals. Tech. Rep. MOX, 13/2013 (2013)Google Scholar
  25. 25.
    Schmidberger, M., Morgan, M., Eddelbuettel, D., Yu, H., Tierney, L., Mansmann, U.: State of the art in parallel computing with R. J. Stat. Softw. 31, 1 (2009)Google Scholar
  26. 26.
    SCo - Complex Data Modeling and Computationally Intensive Statistical Methods for Estimation and Prediction. Politecnico di Milano, Milano, 9–11 September 2013 http://mox.polimi.it/sco2013/
  27. 27.
    Secchi, P., Stamm, A., Vantini, S.: Inference for the mean of large p small n data: A finite-sample high-dimensional generalization of Hotelling’s theorem. Electron. J. Stat. 7, 2005–2031 (2013) doi:10.1214/13-EJS833CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Tufte, E.: The Visual Display of Quantitative Information. Graphics Press, Cheshire (1983)Google Scholar
  29. 29.
    Wills, G.: Visualizing Time: Designing Graphical Representations for Statistical Data. Springer, New York (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Laura Azzimonti
    • 1
  • Marzia A. Cremona
    • 1
  • Andrea Ghiglietti
    • 1
  • Francesca Ieva
    • 2
    Email author
  • Alessandra Menafoglio
    • 1
  • Alessia Pini
    • 1
  • Paolo Zanini
    • 1
  1. 1.MOX – Modeling and Scientific Computing, Department of MathematicsPolitecnico di MilanoMilanoItaly
  2. 2.Department of Mathematics “Federigo Enriques”Università degli Studi di MilanoMilanoItaly

Personalised recommendations