Charge Counter for Performing Active Charge-Balance in Miniaturized Electrical Stimulators

  • Laura Becerra-Fajardo
  • Antoni Ivorra
Part of the IFMBE Proceedings book series (IFMBE, volume 45)

Abstract

Functional Electrical Stimulation (FES) has been explored in order to restore the capabilities of the nervous system in patients that suffer from paralysis. This area of research and of clinical practice greatly benefits from any technological improvement yielding miniaturization. In this regard, we recently proposed and demonstrated an innovative electrical stimulation method based on implanted microstimulators that operate as rectifiers of bursts of innocuous high frequency current supplied by skin electrodes, generating low frequency currents that are capable of stimulating excitable tissues. We envision flexible ultrathin implants (diameters < 300 μm) containing ASICs that have advanced capabilities, such as addressability and current control. As miniaturization is the main aim of this method, the use of bulky DC-blocking capacitors (e.g. 10 μF) to accomplish zero net charge injection and avoid electrochemical tissue and electrode damage is highly inconvenient. As an alternative, here we present an active charge-balance method based on the use of a digital charge quantifier, whose operation is inspired in the functioning of the tipping bucket rain gauge. The system monitors the charge injection, matching the charge injected in the cathodal phase, with the charge injected in the anodal phase, generating a biphasic current waveform that adapts itself to possible current source mismatches. We have implemented a prototype built with discrete components which uses a capacitor of only 100 pF for the charge counter.

Keywords

FES active charge-balance dc-blocking capacitor rectifier miniaturization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Laura Becerra-Fajardo
    • 1
  • Antoni Ivorra
    • 1
  1. 1.Department of Information and Communication TechnologiesUniversitat Pompeu FabraBarcelonaSpain

Personalised recommendations