Characterization of phosphogypsum deposited in Schistos remediated waste site (Piraeus, Greece)

  • F. Papageorgiou
  • A. Godelitsas
  • S. Xanthos
  • N. Voulgaris
  • P. Nastos
  • T. J. Mertzimekis
  • A. Argyraki
  • G. Katsantonis
Conference paper

Abstract

The operation of a phosphate fertilizer industry in Drapetsona, near Piraeus port (Greece), resulted in the deposition of 10 million tons of phosphogypsum (PG) into an old limestone quarry, in the period 1979-1989. The whole deposit has been recently remediated using geomembranes and thick soil cover with vegetation. The purpose of the present study was to characterize representative samples of that phosphogypsum, using diffraction (powder-XRD), microscopic (SEM-EDS), analytical (ICP-MS), and spectroscopic techniques (High-resolution γ-ray spectrometry and XRF). The material contains crystalline gypsum (CaSO4.2H2O) and Ca-Si-Al-S-F (chukhrovite-type/meniaylovite) phases. The natural radioactivity is mainly due to the 238U series and particularly 226Ra (average: 462 Bq/kg), which is relatively low compared to PG from the rest of the world. Furthermore, leaching experiments using local (Attica) rainwater, together with ICP-MS, were performed to assess the potential release of elements in the environment.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al - Attar, L., Al - Oudat, M., Kauakri, S., Budeir, Y., Khalify, H. (2011) Radio-logical Impacts of phosphogypsum. Journal of Environmental Management 92: 2151-2158Google Scholar
  2. Al-Hwaiti, M.S., Ranville, J.F., Ross, P.E. (2010) Bioavailability and mobility of trace metals in phosphogypsum from Aqaba and Eshidiya, Jordan.Chemie der Erde 70: 283-291.Google Scholar
  3. Azouazi, M., Ouahidi, Y., Fakhi, S., Andres, Y., Abbe, J.Ch., Benmansour, M. (2001) Natural radioactivity in phosphates, phosphogypsum and natural waters in Morocco. Journal of Environmental Radioactivity 54: 231-242.Google Scholar
  4. Beretka, J. (1990) The current state of utilization of phosphogypsum in Australia. In: Proceedings of the Third International Symposium on Phosphogypsum, Orlando, FL, FIPR Pub. No. 01-060-083, December 1990, vol. II 394-401Google Scholar
  5. Berish, C.W. (1990) Potential Environmental hazards of phosphogypsum storage in central Florida. Proceedings of the third international symposium on phosphogypsum. Orlando, FL, FIPR Pub. No.01060083;2: 1-29.Google Scholar
  6. Bituh, T., Marovic, G., Franic, Z., Sencar, J., Bronzovic, M. (2009) Radioactive contamination in Croatia by phosphate fertilizer production. Journal of Hazardous Materials 162: 1199-1203Google Scholar
  7. Carbonell – Barrachina, A.,DeLaune, R.D., Jugsujinda, A. (2002)Phosphogypsum chemistry under highly anoxic conditions. Waste Management 22 (6): 657-665.Google Scholar
  8. Chauhan, P., Chauhan, R.P., Gupta, M. (2013) Estimation of naturally occuring radionuclides in fertilizers using gamma spectrometry and elemental analysis by XRF and XRD techniques.Microchemical Journal 106: 73-78.Google Scholar
  9. Coates, Woodward (1966) Similarity between “chukrovite” and the octahedral crystals found in the gypsum in the manufacture of phosphoric acid. Nature: 212-392Google Scholar
  10. El-Didamony, H., Gado, H.S., Awwad, N.S., Fawzy, M.M., Attallah, M.F. (2013) Treatment of phosphogypsum waste produced from phosphate ore processing. Journal of Hazardous Materials: 244-245 596-602.Google Scholar
  11. EPA, 1998. Code of Federal Regulations, 1998. Title 40, Vol. 7, Parts 61.202 and 61.204Google Scholar
  12. (40CFR61.202 and 40CFR61.204).Google Scholar
  13. Fourati, A., Faludi, G. (1988) Changes in radioactivity of phosphate rocks during the process of production. Journal of Radioanalytical and Nuclear Chemistry 125: 287-293.Google Scholar
  14. Fukuma, H.T., Fernandes, E.A.N, Quinelato, A.L. (2000) Distribution of naturalradionuclides during the processing of phosphate rock from Itataia - Brazil for production of phosphoric acid and uranium concentrate. Radiochim.Acta 88: 809-812.Google Scholar
  15. Haridasan, P.P., Maniyan, C.G., Pillai, P.M.B., Khan, A.H. (2002)Dissolution characteristics of 226Ra from phosphogypsum. Journal of Environmental Radioactivity 62: 287-294.Kacimi, L., Simon – Masseron, A., Ghomari, A., Derriche, Z. (2006) Reduction of clinkerization temperature by using phosphogypsum. Journal of Hazardous Materials 137 (1): 129- 137.Google Scholar
  16. Kobal, I., Brajnik, D., Kaluza, F., Vengust, M. (1990) Radionuclides in effluents from coal mines, a coal-fired powerplant, and a phosphate processing plant in Zasanje, Slovenia (Yugoslavia). Health Physics 58: 8-85.Google Scholar
  17. Laiche, T.P., Scott, M.L. (1991) A radiological evaluation of phosphogypsum. Health Physics 60: 691-693.Google Scholar
  18. Li Y.H and Schoonmaker J. (2003) in: F.T. Mackenzie (Ed.)H.D. Holland, K.K. Turekian (Eds.), Sediments, Daigenesis, and Sedimentary Rocks, Treatise on Geochemistry, vol. 7, Elsevier-Pergamon, Oxford (2003) 1–35.Google Scholar
  19. Luther, S.M., Dudas, M.J., Rutherford, P.M. (1993) Radioactivity and chemical characteristics of Alberta phosphogypsum. Water, Air, and Soil Pollution 69: 277-290.Google Scholar
  20. Mullins, G.L., Mitchell Jr., C.C. (1990) Use of phosphogypsum to increase yield and quality of annual forages. FIPR Pub. No. 01-048-084, Auburn University, 56.Google Scholar
  21. Okeji, M.C., Agwu, K.K., Idigo, F.U. (2012) Assessment of natural radioactivity in phosphate ore, phosphogypsum, and soil samples around a phosphate fertilizer plant in Nigeria. Bull Environ Contam Toxico 89:1078–1081Google Scholar
  22. Oliveira, S.M.B., Imbernon, R.A.(1998) Weathering alteration and related REE concentration in the Catalao I carbonatite complex, central Brazil. J S Am Ear Sci 11 (4): 379-388.Google Scholar
  23. Perez – Lopez, R., Alvarez – Valero, A., Nieto, J.M. (2007)Changes in mobility of toxic elements during the production of phosphoric acid in the fertilizer industry of Huelva (SW Spain) and environmental impact of phosphogypsum wastes. J Haz Mat 148: 745-750.Google Scholar
  24. Papastefanou, C., Stoulas, S., Ioannidou, A., Manolopoulou, M.(2006) The application of phosphogypsum in agriculture and the radiological impact. J Env Rad 89: 188-198.Google Scholar
  25. Roessler, C.E., Smith, Z.A., Bolch, W.E., Prince, R.J. (1979) Uranium and radium-226 in Florida phosphate materials. Health Physics: 37 269-277Google Scholar
  26. Roselli, C.,Desideri, D., AssuntaMeli, M. (2009) Radiological characterization of phosphate fertilizers:Comparison between alpha and gamma spectrometry. Mi-crochem J91: 181-186.Google Scholar
  27. Rudnick, L.R., Gao,S., (2003) The composition of the continental crust,in: R.L. Rudnick (Ed.)H.D. Holland, K.K. Turekian (Eds.), The Crust, Treatise on Geo-chemistry, vol. 3, Elsevier-Pergamon, Oxford 1–64Google Scholar
  28. Rutheford, P.M., Dudas, M.J., Arocena, J.M. (1996) Heterogeneous distribution of radionuclides, barium and strontium in phosphogypsum by-product. Science of the Total Environment 180: 201-209.Google Scholar
  29. Shannon, D.R. (1976) Revised Effective Ionic Radii and Systematic Studies of In-teratomic Distances in Halides and Chalcogenides.ActaCryst. A32:. 751-767.Google Scholar
  30. Silva, L.F.O., Hower, J. C., Izquierdo, M., Querol, X. (2010) Complex na-nominerals and ultrafine particles assemblages in phosphogypsum of the fertilizer industry and implications on human exposure. Science of the Total Environment 408, pp. 5117 - 5122.Google Scholar
  31. TayibiHanan, Chouva Mohamed, Lopez A. Felix, Alguacil J. Francisco, Lopez - Gelgado Aurora(2009) Environmental impact and management of Phosphogypsum. Journal of Environmental Management 90: 2377-2386.Google Scholar
  32. Villalobos, M. R., Vioque, I., Mantero, J., Manjon, G. (2010) Radiological, chemical and morphological characterizations of phosphate rock and phosphogyp-sum from phosphoric acid factories in SW Spain. J Haz Mat 181: 193-203.Google Scholar
  33. Zielinski, R.A., Al-Hwaiti, M.S (2011) Radionuclides, trace elements, and radium residenceinphosphogypsum of Jordan.EnviGeochem Health 33: 149-165.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • F. Papageorgiou
    • 1
  • A. Godelitsas
    • 1
  • S. Xanthos
    • 1
  • N. Voulgaris
    • 2
  • P. Nastos
    • 1
  • T. J. Mertzimekis
    • 1
  • A. Argyraki
    • 1
  • G. Katsantonis
    • 3
  1. 1.School of ScienceUniversity of AthensAthensGreece
  2. 2.Department of Automation EngineeringAlexander Technological Educational Institute of ThessalonikiThessalonikiGreece
  3. 3.Environmental Association of Municipalities of AthensPiraeusGreece

Personalised recommendations