Development of Magnesium Alloy Scaffolds to Support Biological Myocardial Grafts: A Finite Element Investigation

  • Martin WeidlingEmail author
  • Silke Besdo
  • Tobias Schilling
  • Michael Bauer
  • Thomas Hassel
  • Friedrich-Wilhelm Bach
  • Hans Jürgen Maier
  • Jacques Lamon
  • Axel Haverich
  • Peter Wriggers
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 74)


Lesioned myocardial tissue can be replaced with innovative biological grafts. However, the strength of most biological grafts is initially not sufficient for left ventricular applications. Implants that mechanically support these grafts and gradually lose their function as the graft develops its strength are a possible solution. We are developing magnesium alloy scaffolds for this purpose. The finite element method was used to perform simulations wherein scaffolds are deformed according to the heart movement. This allows us to identify highly stressed regions within the implant that need design changes. Preformed scaffolds were determined to have significantly lower stresses in comparison to flat ones. The method of tensile triangles suggests shape changes for notable stress reduction. Furthermore, new scaffold shapes were developed and simulated. Two of them are recommended for further examinations through in vitro and in vivo tests. A completely new alternative scaffold concept is also proposed.


Numerical simulation FEM Tensile triangles LA63 Left ventricle Heart attack Tissue substitution Supporting structure 



The authors are thankful to the German Research Foundation (DFG) for their financial support. This project is funded within the Collaborative Research Center 599 (SFB 599) and the International Research Training Group 1627 (GRK 1627). Furthermore, we thank Martina Baldrich who developed scaffold shape 7 and Julian Schrader who developed shapes 8–12 in student projects, respectively.


  1. 1.
    Athanasuleas, C.L., Stanley, A.W., Buckberg, G.D., et al.: Surgical anterior ventricular endocardial restoration (SAVER) in the dilated remodeled ventricle after anterior myocardial infarction. RESTORE group. Reconstructive Endoventricular Surgery, returning Torsion Original Radius Elliptical Shape to the LV. J. Am. Coll. Cardiol. 37(5), 1199–1209 (2001)CrossRefGoogle Scholar
  2. 2.
    Cooley, D.A.: Ventricular endoaneurysmorrhaphy: results of an improved method of repair. Tex. Heart Inst. J. 16(2), 72–75 (1989)MathSciNetGoogle Scholar
  3. 3.
    Dor, V.: Surgery for left ventricular aneurysm. Curr. Opin. Cardiol. 5(6), 773–780 (1990)CrossRefGoogle Scholar
  4. 4.
    Adhyapak, S.M., Parachuri, V.R.: Architecture of the left ventricle: insights for optimal surgical ventricular restoration. Heart Fail. Rev. 15(1), 73–83 (2010)CrossRefGoogle Scholar
  5. 5.
    Anderson, R.H., Ho, S.Y., Redmann, K., et al.: The anatomical arrangement of the myocardial cells making up the ventricular mass. Eur. J. Cardiothorac. Surg. 28(4), 517–525 (2005)CrossRefGoogle Scholar
  6. 6.
    Williams, A.R., Hatzistergos, K.E., Addicott, B., et al.: Enhanced effect of combining human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and to restore cardiac function after myocardial infarction. Circulation 127(2), 213–223 (2013)CrossRefGoogle Scholar
  7. 7.
    Schilling, T., Cebotari, S., Tudorache, I., et al.: Tissue engineering of vascularized myocardial prosthetic tissue. Chirurg 82(4), 319–324 (2011). in GermanCrossRefGoogle Scholar
  8. 8.
    Badylak, S.F.: The extracellular matrix as a scaffold for tissue reconstruction. Semin. Cell Dev. Biol. 13(5), 377–383 (2002)CrossRefGoogle Scholar
  9. 9.
    Wei, H., Liang, H., Lee, M., et al.: Construction of varying porous structures in acellular bovine pericardia as a tissue-engineering extracellular matrix. Biomaterials 26(14), 1905–1913 (2005)CrossRefGoogle Scholar
  10. 10.
    Taheri, S.A., Ashraf, H., Merhige, M., et al.: Myoangiogenesis after cell patch cardiomyoplasty and omentopexy in a patient with ischemic cardiomyopathy. Tex Heart Inst. J. 32(4), 598–601 (2005)Google Scholar
  11. 11.
    Wang, B., Borazjani, A., Tahai, M., et al.: Fabrication of cardiac patch with decellularized porcine myocardial scaffold and bone marrow mononuclear cells. J. Biomed. Mater. Res. 94(4), 1100–1110 (2010)Google Scholar
  12. 12.
    Tudorache, I., Kostin, S., Meyer, T., et al.: Viable vascularized autologous patch for transmural myocardial reconstruction. Eur. J. Cardiothorac. Surg. 36(2), 306–311 (2009)CrossRefGoogle Scholar
  13. 13.
    Badylak, S.F., Kochupura, P.V., Cohen, I.S., et al.: The use of extracellular matrix as an inductive scaffold for the partial replacement of functional myocardium. Cell Transplant. 15(Suppl 1), 29–40 (2006)CrossRefGoogle Scholar
  14. 14.
    Wiltfang, J., Merten, H.A., Schlegel, K.A., et al.: Degradation characteristics of \({\alpha }\) and \({\beta }\) tri-calcium-phosphate (TCP) in minipigs. J. Biomed. Mater. Res. 63(2), 115–121 (2002)CrossRefGoogle Scholar
  15. 15.
    Nair, L.S., Laurencin, C.T.: Biodegradable polymers as biomaterials. Prog. Polym. Sci.32(8–9), 762–798 (2007)Google Scholar
  16. 16.
    Pietrzak, W.S., Sarver, D., Verstynen, M.: Bioresorbable implants – practical considerations. Bone 19(1), 109–119 (1996)CrossRefGoogle Scholar
  17. 17.
    van der Giessen, W.J., Lincoff, A.M., Schwartz, R.S., et al.: Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries. Circulation 94(7), 1690–1697 (1996)CrossRefGoogle Scholar
  18. 18.
    Atrens, A., Song, G., Cao, F., et al.: Advances in Mg corrosion and research suggestions. J. Magnes. Alloy. 1(3), 177–200 (2013)Google Scholar
  19. 19.
    Witte, F., Hort, N., Vogt, C., et al.: Degradable biomaterials based on magnesium corrosion. Curr. Opin. Solid State Mater. Sci. 12(5–6), 63–72 (2008)CrossRefGoogle Scholar
  20. 20.
    Kirkland, N., Lespagnol, J., Birbilis, N., et al.: A survey of bio-corrosion rates of magnesium alloys. Corros. Sci. 52(2), 287–291 (2010)CrossRefGoogle Scholar
  21. 21.
    Staiger, M.P., Pietak, A.M., Huadmai, J., et al.: Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27(9), 1728–1734 (2006)CrossRefGoogle Scholar
  22. 22.
    Bach, F., Haverich, A., Cebotari. S., Biskup, C., Schuster, B.: Supporting element for tissue implants (Patent WO 2011/101142 A1)Google Scholar
  23. 23.
    Walker, J., Shadanbaz, S., Woodfield, T.B.F., et al.: The in vitro and in vivo evaluation of the biocompatibility of Mg alloys. Biomed. Mater. 9(1), 15006 (2014)CrossRefGoogle Scholar
  24. 24.
    Schilling, T., Brandes, G., Tudorache, I., et al.: In vivo degradation of magnesium alloy LA63 scaffolds for temporary stabilization of biological myocardial grafts in a swine model. BiomedizinischeTechnik/Biomedical Engineering 58(5), 407–416 (2013)Google Scholar
  25. 25.
    Bauer, M., Schilling, T., Weidling, M., et al.: Geometric adaption of biodegradable magnesium alloy scaffolds to stabilise biological myocardial grafts, Part I. J. Mater. Sci. Mater. Med. 25(3), 909–916 (2014)CrossRefGoogle Scholar
  26. 26.
    Bonora, P., Andrei, M., Eliezer, A., et al.: Corrosion behaviour of stressed magnesium alloys. Corros. Sci. 44(4), 729–749 (2002)CrossRefGoogle Scholar
  27. 27.
    Hoffmeister, B.K., Handley, S.M., Wickline, S.A., et al.: Ultrasonic determination of the anisotropy of Young’s modulus of fixed tendon and fixed myocardium. J. Acoust. Soc. Am. 100(6), 3933–3940 (1996)CrossRefGoogle Scholar
  28. 28.
    Weidling, M., Besdo, S., Schilling, T., et al.: Finite element simulation of myocardial stabilising structures and development of new designs. Biomedical Engineering/BiomedizinischeTechnik. 58 (Suppl. 1)(2013)Google Scholar
  29. 29.
    Biskup, C., Hepke, M., Grittner, N., et al.:AWIJ cutting of structures made of magnesium alloys for the cardiovascular surgery. In: American WJTA Conference and Expo (2009)Google Scholar
  30. 30.
    Mattheck, C.: Secret Design Rules of Nature. Überw. Ill, 1st edn. Forschungszentrum Karlsruhe, Karlsruhe (2007)Google Scholar
  31. 31.
    Feng, B., Veress, A., Sitek, A., et al.: Estimation of mechanical properties from gated SPECT and cine MRI data using a finite-element mechanical model of the left ventricle. IEEE Trans. Nucl. Sci. 48(3), 725–733 (2001)CrossRefGoogle Scholar
  32. 32.
    Feng, L., Weixue, L., Ling, X., et al.: The construction of three-dimensional composite finite element mechanical model of human left ventricle. JSME Int. J. Ser C 44(1), 125–133 (2001)CrossRefGoogle Scholar
  33. 33.
    Wong, J., Kuhl, E.: Generating fibre orientation maps in human heart models using Poisson interpolation. Comput. Methods Biomech. Biomed. Eng.: 1–10 (2012)Google Scholar
  34. 34.
    Watanabe, H., Sugiura, S., Kafuku, H., et al.: Multiphysics simulation of left ventricular filling dynamics using fluid-structure interaction finite element method. Biophys. J. 87(3), 2074–2085 (2004)CrossRefGoogle Scholar
  35. 35.
    Song, G., Atrens, A.: Recent insights into the mechanism of magnesium corrosion and research suggestions. Adv. Eng. Mater. 9(3), 177–183 (2007)CrossRefGoogle Scholar
  36. 36.
    Winzer, N., Atrens, A., Song, G., et al.: A critical review of the stress corrosion cracking (SCC) of Magnesium alloys. Adv. Eng. Mater. 7(8), 659–693 (2005)CrossRefGoogle Scholar
  37. 37.
    Tokaji, K., Kamakura, M., Ishiizumi, Y., et al.: Fatigue behaviour and fracture mechanism of a rolled AZ31 Magnesium alloy. Int. J. Fatigue 26(11), 1217–1224 (2004)CrossRefGoogle Scholar
  38. 38.
    Mayer, H., Papakyriacou, M., Zettl, B., et al.: Influence of porosity on the fatigue limit of die cast magnesium and aluminium alloys. Int. J. Fatigue 25(3), 245–256 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Martin Weidling
    • 1
    Email author
  • Silke Besdo
    • 1
  • Tobias Schilling
    • 2
  • Michael Bauer
    • 3
  • Thomas Hassel
    • 3
  • Friedrich-Wilhelm Bach
    • 3
  • Hans Jürgen Maier
    • 3
  • Jacques Lamon
    • 4
  • Axel Haverich
    • 2
  • Peter Wriggers
    • 1
  1. 1.Institute of Continuum MechanicsLeibniz Universität HannoverHannoverGermany
  2. 2.Transplantation and Vascular SurgeryHannover Medical SchoolHannoverGermany
  3. 3.Institut Für Werkstoffkunde (Materials Science)Leibniz Universität HannoverHannoverGermany
  4. 4.Laboratoire de Mécanique et TechnologieÉcole Normale Supérieur de CachanCachanFrance

Personalised recommendations