Brain-Computer Interfaces pp 97-121

Part of the Intelligent Systems Reference Library book series (ISRL, volume 74) | Cite as

Translational Algorithms: The Heart of a Brain Computer Interface



Brain computer Interface (BCI) development encapsulates three basic processes: data acquisition, data processing, and device control. Since the start of the millennium the BCI development cycle has undergone a metamorphosis. This is mainly due to the increased popularity of BCI applications in both commercial and research circles. One of the focuses of BCI research is to bridge the gap between laboratory research and commercial applications using this technology. A vast variety of new approaches are being employed for BCI development ranging from novel paradigms, such as simultaneous acquisitions, through to asynchronous BCI control. The strategic usage of computational techniques, comprising the heart of the BCI system, underwrites this vast range of approaches. This chapter discusses these computational strategies and translational techniques including dimensionality reduction, feature extraction, feature selection, and classification techniques.


Event related (de)/synchronisation Principal component analysis Feature extraction Feature selection BCI classification 


  1. 1.
    Ang, K.K., Guan, C., Chua, K.S.G., et al.: Clinical study of neurorehabilitation in stroke using EEG-based motor imagery brain-computer interface with robotic feedback. In: Conference of the IEEE Engineering in Medicine and Biology Society (2010)Google Scholar
  2. 2.
    Azar, A., Balas, V., Olariu, T.: Classification of EEG-based brain-computer interfaces. In: Iantovics, B., Kountchev, R. (eds.) Advanced Intelligent Computational Technologies and Decision Support Systems SE—9, Studies in Computational Intelligence, pp. 97–106. Springer, New York (2014)Google Scholar
  3. 3.
    Billinger, M., Daly, I., Kaiser, V., et al.: Is it significant? Guidelines for reporting BCI performance. In: Toward Practical BCIs: Bridging the Gap from Research to Real-World Applications (2012)Google Scholar
  4. 4.
    Birbaumer, N.: The thought-translation device (TTD): neurobehavioral mechanisms and clinical outcome. Rehabilitation 11(2), 120–123 (2003)Google Scholar
  5. 5.
    Birbaumer, N.: Breaking the silence: brain-computer interfaces (BCI) for communication and motor control. Psychophysiology 43(6), 517–532 (2006)CrossRefGoogle Scholar
  6. 6.
    Chen, X., Bin, G., Daly, I., et al.: Event-related desynchronization (ERD) in the alpha band during a hand mental rotation task. Neurosci. Lett. 541, 238–242 (2013)Google Scholar
  7. 7.
    De Clercq, W., Vergult, A., Vanrumste, B., et al.: Canonical correlation analysis applied to remove muscle artifacts from the electroencephalogram. IEEE Trans. Bio-med. Eng. 53(12 Pt 1), 2583–2587 (2006)CrossRefGoogle Scholar
  8. 8.
    Coyle, S.M., Ward, T.E., Markham, C.M.: Brain-computer interface using a simplified functional near-infrared spectroscopy system. J. Neural. Eng. 4, 219–226 (2007). doi: 10.1088/1741-2560/4/3/007
  9. 9.
    Daly, I., Billinger, M., Laparra-Hernández, J., et al.: On the control of brain-computer interfaces by users with cerebral palsy. Clin. Neurophysiol.: Off. J. Int. Fed. Clin. Neurophysiol. 124(9), 1787–1797 (2013)CrossRefGoogle Scholar
  10. 10.
    Daly, I., Nasuto, S.J., Warwick, K.: Single tap identification for fast BCI control. Cogn. Neurodyn. 5(1), 21–30 (2011)CrossRefGoogle Scholar
  11. 11.
    Daly, I., Nasuto, S.J., Warwick, K.: Brain computer interface control via functional connectivity dynamics. Pattern Recogn. 45(6), 2123–2136 (2012)CrossRefGoogle Scholar
  12. 12.
    Daly, I., Nicolaou, N., Nasuto, S.J., et al.: Automated artifact removal from the electroencephalogram: a comparative study. Clin. EEG Neurosci. 44(4), 291–306 (2013)CrossRefGoogle Scholar
  13. 13.
    Donchin, E., Heffley, E., Hillyard, S.A., et al.: Cognition and event-related potentials II. The orienting reflex and P300. Ann. NY Acad. Sci. 425(1 Brain and Inf), 39–57 (1984)Google Scholar
  14. 14.
    Ebersole, J.S., Pedley, T.A.: Current practice of clinical electroencephalography, 3rd edn. Eur. J. Neurol. 10(5), 604–605 (2003)CrossRefGoogle Scholar
  15. 15.
    Farwell, La, Donchin, E.: Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 70(6), 510–523 (1988)CrossRefGoogle Scholar
  16. 16.
    Fazli, S., Mehnert, J., Steinbrink, J., et al.: Enhanced performance by a hybrid NIRS-EEG brain computer interface. NeuroImage 59(1), 519–529 (2012)CrossRefGoogle Scholar
  17. 17.
    Friedrich, E.V.C., Scherer, R., Neuper, C.: The effect of distinct mental strategies on classification performance for brain-computer interfaces. Int. J. Psychophysiol. 84, 86–94 (2012)CrossRefGoogle Scholar
  18. 18.
    Gan, G.: Data Clustering: Theory, Algorithms and Applications. SIAM, Philadelphia (2007)Google Scholar
  19. 19.
    Gibson, A., Dehghani, H.: Diffuse optical imaging. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 367(1900), 3055–3072 (2009)CrossRefMathSciNetMATHGoogle Scholar
  20. 20.
    Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning. Mach. Learn. 3(2), 95–99 (1988)CrossRefGoogle Scholar
  21. 21.
    Graimann, B., Huggins, J., Levine, S., et al.: Visualization of significant ERD/ERS patterns in multichannel EEG and ECoG data. Clin. Neurophysiol. 113(1), 43–47 (2002)CrossRefGoogle Scholar
  22. 22.
    Guger, C., Harkam, W., Hertnaes, C., et al.: Prosthetic control by an EEG-based brain-computer interface (BCI). In: Proceedings of the AAATE Conference (1999)Google Scholar
  23. 23.
    Guyon, I.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3(7–8), 1157–1182 (2003)MATHGoogle Scholar
  24. 24.
    Hall, M.A.: Correlation-based feature selection for machine learning. Ph.D. thesis (1999)Google Scholar
  25. 25.
    Handy, T.C.: Event-related Potentials: A Methods Handbook. MIT Press, Cambridge (2005)Google Scholar
  26. 26.
    Hill, N.J., Lal, T.N., Schröder, M., et al.: Classifying EEG and ECoG signals without subject training for fast BCI implementation: comparison of nonparalyzed and completely paralyzed subjects. IEEE Trans. Neural Syst. Rehabil. Eng. 14(2), 183–186 (2006)CrossRefGoogle Scholar
  27. 27.
    Huggins, J.E., Guger, C., Allison, B., et al.: Workshops of the fifth international brain-computer interface meeting: defining the future. Brain-Comput. Interfaces 1(1), 27–49 (2014)CrossRefGoogle Scholar
  28. 28.
    Hwang, H.-J., Kim, S., Choi, S., et al.: EEG-based brain-computer interfaces (BCIs): a thorough literature survey. Int. J. Human-Comput. Int. 29(12), 130429122442009 (2013)Google Scholar
  29. 29.
    Izzetoglu, M., Izzetoglu, K., Bunce, S., et al.: Functional near-infrared neuroimaging. IEEE Trans. Neural Syst. Rehabil. Eng.: Publ. IEEE Eng. Med. Biol. Soc. 13(2), 153–159 (2005)CrossRefGoogle Scholar
  30. 30.
    Jin, J., Sellers, E.W., Zhang, Y., et al.: Whether generic model works for rapid ERP-based BCI calibration. J. Neurosci. Methods 212(1), 94–99 (2013)CrossRefGoogle Scholar
  31. 31.
    Kennedy, P., Andreasen, D., Ehirim, P., et al.: Using human extra-cortical local field potentials to control a switch. J. Neural Eng. 1(2), 72–77 (2004)CrossRefGoogle Scholar
  32. 32.
    Kohavi, R.: Wrappers for feature subset selection. Artif. Intell. 97(1–2), 273–324 (1997)CrossRefMATHGoogle Scholar
  33. 33.
    Koles, Z.J., Lazar, M.S., Zhou, S.Z.: Spatial patterns underlying population differences in the background EEG. Brain Topogr. 2(4), 275–284 (1990)CrossRefGoogle Scholar
  34. 34.
    Kottaimalai, R., Rajasekaran, M.P., Selvam, V., et al.: EEG signal classification using principal component analysis with neural network in brain computer interface applications. In: 2013 IEEE International Conference on Emerging Trends in Computing, Communication and Nanotechnology (ICECCN), pp. 227–231 (2013)Google Scholar
  35. 35.
    Krusienski, D.J., Sellers, E.W., McFarland, D.J., et al.: Toward enhanced P300 speller performance. J. Neurosci. Methods 167(1), 15–21 (2008)CrossRefGoogle Scholar
  36. 36.
    Lal, T.N., Schr, M., Hill, N.J., et al.: A brain computer interface with online feedback based on magnetoencephalography. In: Proceedings of 22nd International Conference on Machine Learning (2005)Google Scholar
  37. 37.
    Leeb, R., Friedman, D., Müller-Putz, G.R., et al.: Self-paced (asynchronous) BCI control of a wheelchair in virtual environments: a case study with a tetraplegic. Comput. Intell. Neurosci. 79642 (2007)Google Scholar
  38. 38.
    Lotte, F., Congedo, M., Lécuyer, A., et al.: A review of classification algorithms for EEG-based brain-computer interfaces. J. Neural. Eng. 4, R1–R13 (2007). doi: 10.1088/1741-2560/4/2/R01
  39. 39.
    Luck, S.J.: Ten simple rules for designing ERP experiments. In: Handy, T.C. (ed.) Event-Related Potentials—A Methods Handbook, pp. 17–32. MIT Press, Cambridge (2005)Google Scholar
  40. 40.
    Mappus IV, R.L., Venkatesh, G.R., Shastry, C., et al.: An fNIR based BMI for letter construction using continuous control. CHI ’09 Extended Abstracts on Human Factors in Computing Systems. ACM, New York, pp. 3571–3576 (2009) Google Scholar
  41. 41.
    Mason, S.G., Birch, G.E.: A general framework for brain-computer interface design. IEEE Trans. Neural Syst. Rehabil. Eng.: Publ. IEEE Eng. Med. Biol. Soc. 11(1), 70–85 (2003)CrossRefGoogle Scholar
  42. 42.
    Mellinger, J., Schalk, G., Braun, C., et al.: An MEG-based brain-computer interface (BCI). NeuroImage 36(3), 581–593 (2007)CrossRefGoogle Scholar
  43. 43.
    Menon, V., Freeman, W.J., Cutillo, B.A., et al.: Spatio-temporal correlations in human gamma band electrocorticograms. Electroencephalogr. Clin. Neurophysiol. 98(2), 89–102 (1996)CrossRefGoogle Scholar
  44. 44.
    Miranda, E.R., Magee, W.L., Wilson, J.J., et al.: Brain-computer music interfacing (BCMI): from basic research to the real world of special needs. Music Med. 3(3), 134–140 (2011)CrossRefGoogle Scholar
  45. 45.
    Müller-Putz, G.R., Scherer, R., Brauneis, C., et al.: Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components. J. Neural Eng. 2(4), 123–130 (2005)CrossRefGoogle Scholar
  46. 46.
    Naito, M., Michioka, Y., Ozawa, K., et al.: A Communication Means for Totally Locked-in ALS Patients Based on Changes in Cerebral Blood Volume Measured with Near-Infrared Light. IEICE Trans Inf Syst. E90-D:1028–1037 (2007)Google Scholar
  47. 47.
    Nam, C.S., Li, Y., Johnson, S.: Evaluation of P300-based brain-computer interface in real-world contexts. Int. J. Human-Comput. Interact. 26(6), 621–637 (2010)CrossRefGoogle Scholar
  48. 48.
    Neuper, C., Scherer, R., Reiner, M., et al.: Imagery of motor actions: differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG. Brain Res. Cogn. Brain Res. 25(3), 668–677 (2005)CrossRefGoogle Scholar
  49. 49.
    Nicolas-Alonso, L.F., Gomez-Gil, J.: Brain computer interfaces, a review. Sensors (Basel) 12, 1211–79 (2012). doi: 10.3390/s12020121
  50. 50.
    Niedermeyer, E., Da Silva, F.H.L.: Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins, Philadelphia (2005)Google Scholar
  51. 51.
    Nijholt, A., Desney, T.: BCI for Games: a State of the Art Survey. Lecture Notes in Computer Science. Springer, Berlin (2009)Google Scholar
  52. 52.
    O’Brien, J.H.: P300 wave elicited by a stimulus-change paradigm in acutely prepared rats. Physiol. Behav. 28(4), 711–713 (1982)CrossRefGoogle Scholar
  53. 53.
    Perelmouter, J., Birbaumer, N.: A binary spelling interface with random errors. IEEE Trans. Rehabil. Eng. 8(2), 227–232 (2000)CrossRefGoogle Scholar
  54. 54.
    Perez, J.L.M., Cruz, A.B.: Linear discriminant analysis on brain computer interface. In: 2007 IEEE International Symposium on Intelligent Signal Processing, pp. 1–6 (2007)Google Scholar
  55. 55.
    Pfurtscheller, G., Lopes da Silva, F.H.: Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110(11), 1842–1857 (1999)CrossRefGoogle Scholar
  56. 56.
    Pfurtscheller, G., Müller-Putz, G.R., Schlögl, A., et al.: 15 years of BCI research at Graz University of Technology: current projects. IEEE Trans. Neural Syst. Rehabil. Eng. 14(2), 205–210 (2006)CrossRefGoogle Scholar
  57. 57.
    Pfurtscheller, G., Allison, B.Z., Brunner, C., et al.: The hybrid BCI. Front. Neuroprosthetics 4(30) (2010)Google Scholar
  58. 58.
    Power, S.D., Falk, T.H., Chau. T.: Classification of prefrontal activity due to mental arithmetic and music imagery using hidden Markov models and frequency domain near-infrared spectroscopy. J. Neural. Eng. 7, 26002 (2010). doi: 10.1088/1741-2560/7/2/026002
  59. 59.
    Pregenzer, M., Pfurtscheller, G.: Frequency component selection for an EEG-based brain to computer interface. IEEE Trans. Rehabil. Eng. 7(4), 413–419 (1999)CrossRefGoogle Scholar
  60. 60.
    Schalk, G., Leuthardt, E.C.: Brain-computer interfaces using electrocorticographic signals. IEEE Rev. Biomed. Eng. 4, 140–154 (2011)CrossRefGoogle Scholar
  61. 61.
    Schalk, G., McFarland, D.J., Hinterberger, T., et al.: BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans. Bio-med. Eng. 51(6), 1034–1043 (2004)CrossRefGoogle Scholar
  62. 62.
    Scherer, R., Graimann, B., Huggins, J.E., et al.: Frequency component selection for an ECoG-based brain-computer interface. Biomed. Tech. Biomed. Eng. 48(1–2), 31–36 (2003)CrossRefGoogle Scholar
  63. 63.
    Schlogl, A., Kronegg, J., Huggins, J.E., et al.: Evaluation Criteria in BCI Research. MIT Press, Cambridge (2007)Google Scholar
  64. 64.
    Schomer, L., Lopes de Silva, F., (eds.): Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 6th edn. Lippincott Williams & Wilkins, Philadelphia (2011)Google Scholar
  65. 65.
    Sellers, E.W., Donchin, E.: A P300-based brain-computer interface: initial tests by ALS patients. Clin. Neurophysiol.: Off. J. Int. Fed. Clin. Neurophysiol. 117(3), 538–548 (2006)CrossRefGoogle Scholar
  66. 66.
    Silvoni, S., Ramos-Murguialday, A., Cavinato, M., et al.: Brain-computer interface in stroke: a review of progress. Clin. EEG Neurosci. 42(4), 245–252 (2011)CrossRefGoogle Scholar
  67. 67.
    Singh, H., Qin, X., Hines, E., et al.: Classification and feature extraction strategies for multi channel multi trial BCI data. Int. J. Bioelectromagn. 9(4), 233–236 (2007)Google Scholar
  68. 68.
    Singh, H.: Development of EEG Based BCI Approaches for Detection of Awareness in Human Disorders of Consciousness (2009)Google Scholar
  69. 69.
    Singh, H., Yang, J., Singh, S., et al.: Channel selection for multi channel multi trial invasive BCI data. In: Shama, K., Nayak, K.P., Bhat, S. (eds.) Electronic Design and Signal Processing, pp. 92–96 (2012)Google Scholar
  70. 70.
    Sitaram, R., Caria, A., Birbaumer, N.: Hemodynamic brain-computer interfaces for communication and rehabilitation. Neural. Netw. 22, 1320–1328 (2009). doi: 10.1016/j.neunet.2009.05.009
  71. 71.
    Sitaram, R., Caria, A., Veit, R., et al.: FMRI brain-computer interface: a tool for neuroscientific research and treatment. Comput. Intell. Neurosci. 25487 (2007)Google Scholar
  72. 72.
    Smith, L.I.: A Tutorial on Principal Components Analysis. Cornell University, USA (2002)Google Scholar
  73. 73.
    Sorger, B., Reithler, J., Dahmen, B., Goebel, R.: A real-time fMRI-based spelling device immediately enabling robust motor-independent communication. Curr. Biol. 22, 1333–1338 (2012). doi: 10.1016/j.cub.2012.05.022
  74. 74.
    Tangermann, M.W.: Feature selection for brain-computer interfaces. Naturwissenschaften (2007)Google Scholar
  75. 75.
    Teixeira, A.R., Tome, A.M., Lang, E.W., et al.: On the use of clustering and local singular spectrum analysis to remove ocular artifacts from electroencephalograms. In: Proceedings of International Joint Conference on Neural Networks, pp. 2514–2519 (2005)Google Scholar
  76. 76.
    Tudor, M., Tudor, L., Tudor, K.I.: [Hans Berger (1873–1941)—the history of electroencephalography]. Acta Med. Croat.: Cas. Hravatske Akademije Medicinskih Znanosti 59(4), 307–313 (2005)Google Scholar
  77. 77.
    Vaughan, T.M., Heetderks, W.J., Trejo, L.J., et al.: Brain-computer interface technology: a review of the Second International Meeting. IEEE Trans. Neural Syst. Rehabil. Eng.: Publ. IEEE Eng. Med. Biol. Soc. 11(2), 94–109 (2003)CrossRefGoogle Scholar
  78. 78.
    Vaughan, T.M., Wolpaw, J.R.: The third international meeting on brain-computer interface technology: making a difference. IEEE Trans. Neural Syst. Rehabil. Eng.: Publ. IEEE Eng. Med. Biol. Soc. 14(2), 126–127 (2006)CrossRefGoogle Scholar
  79. 79.
    Vaughan, T.M., Wolpaw, J.R.: Special issue containing contributions from the fourth international brain-computer interface meeting. J. Neural Eng. 8(2), 020201 (2011)CrossRefGoogle Scholar
  80. 80.
    Wolf, M., Ferrari, M., Quaresima, V.: Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications. J. Biomed. Opt. 12(6), 062104 (2007)CrossRefGoogle Scholar
  81. 81.
    Wolpaw, J.R., Birbaumer, N., Heetderks, W.J., et al.: Brain-computer interface technology: a review of the first international meeting. IEEE Trans. Neural Syst. Rehabil. Eng.: Publ. IEEE Eng. Med. Biol. Soc. 8(2), 164–173 (2000)CrossRefGoogle Scholar
  82. 82.
    Wolpaw, J.R., McFarland, D.J., Vaughan, T.M., et al.: The Wadsworth Center brain-computer interface (BCI) research and development program. IEEE Trans. Neural Syst. Rehabil. Eng.: Publ. IEEE Eng. Med. Biol. Soc. 11(2), 204–207 (2003)CrossRefGoogle Scholar
  83. 83.
    Xu, P., Yang, P., Lei, X., et al.: An enhanced probabilistic LDA for multi-class brain computer interface. PLoS ONE 6(1), e14634 (2011)CrossRefGoogle Scholar
  84. 84.
    Yang, J., Singh, H., Hines, E.L., et al.: Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach. Artif. Intell. Med. 55(2), 117–126 (2012)CrossRefGoogle Scholar
  85. 85.
    Yorn-Tov, E., Inbar, G.F.: Selection of relevant features for classification of movements from single movement-related potentials using a genetic algorithm. In: 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1364–1366 (2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Medical Physics and BioengineeringUniversity College LondonLondonUK
  2. 2.Brain Embodiment LabUniversity of ReadingBerkshireUK

Personalised recommendations