Visual Analytics for Detecting Anomalous Activity in Mobile Money Transfer Services

  • Evgenia Novikova
  • Igor Kotenko
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8708)


Mobile money transfer services (MMTS) are currently being deployed in many markets across the world and are widely used for domestic and international remittances. However, they can be used for money laundering and other illegal financial operations. The paper considers an interactive multi-view approach that allows describing metaphorically the behavior of MMTS subscribers according to their transaction activities. The suggested visual representation of the MMTS users’ behavior based on the RadViz visualization technique helps to identify groups with similar behavior and outliers. We describe several case studies corresponding to the money laundering and behavioral fraud. They are used to assess the efficiency of the proposed a pproach as well as present and discuss the results of experiments.


Mobile money transfer services fraud detection visual analytics RadViz visualization 


  1. 1.
    Achemlal, M., et al.: Scenario requirements. Technical report. MASSIF FP7-257475 project (2011)Google Scholar
  2. 2.
    Al-Khatib, A.: Electronic Payment Fraud Detection Techniques. World of Computer Science and Information Technology Journal (WCSIT) 2, 137–141 (2012)Google Scholar
  3. 3.
    Ankerst, M., Berchtold, S., Keim, D.A.: Similarity Clustering of Dimensions for an Enhanced Visualization of Multidimensional Data. In: 1998 IEEE Symposium on Information Visualization (INFOVIS 1998), pp. 52–60. IEEE Computer Society (1998)Google Scholar
  4. 4.
    Chang, R., Ghoniem, M., Kosara, R., Ribarsky, W., Yang, J., Suma, E., Ziemkiewicz, C., Kern, D., Sudjianto, A.: WireVis: Visualization of Categorical, Time-Varying Data From Financial Transactions. In: IEEE Symposium on Visual Analytics Science and Technology (VAST 2007), pp. 155–162 (2007)Google Scholar
  5. 5.
  6. 6.
    Delloite. Visual Analytics: Revealing Corruption, Fraud, Waste, and Abuse. Presentation of the Forensic Center,
  7. 7.
    Di Caro, L., Frias-Martinez, V., Frias-Martinez, E.: Analyzing the Role of Dimension Arrangement for Data Visualization in Radviz. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010. LNCS, vol. 6119, pp. 125–132. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Fiserv. Financial Crime Risk Management solution,
  9. 9.
    Gaber, C., Hemery, B., Achemlal, M., Pasquet, M., Urien, P.: Synthetic logs generator for fraud detection in mobile transfer services. In: Int. Conference on Collaboration Technologies and Systems (CTS 2013), pp. 174–179 (2013)Google Scholar
  10. 10.
    Jack, W., Tavneet, S., Townsend, R.: Monetary Theory and Electronic Money: Reflections on the Kenyan Experience. Economic Quarterly 96-1, 83–122 (2010)Google Scholar
  11. 11.
    Keim, D.A., Andrienko, G., Fekete, J.-D., Görg, C., Kohlhammer, J., Melançon, G.: Visual Analytics: Definition, Process, and Challenges. In: Kerren, A., Stasko, J.T., Fekete, J.-D., North, C. (eds.) Information Visualization. LNCS, vol. 4950, pp. 154–175. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Korczak, J., Łuszczyk, W.: Visual Exploration of Cash Flow Chains. In: The Federated Conference on Computer Science and Information Systems, pp. 41–46 (2011)Google Scholar
  13. 13.
    Kotenko, I., Novikova, E.: VisSecAnalyzer: A Visual Analytics Tool for Network Security Assessment. In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES Workshops 2013. LNCS, vol. 8128, pp. 345–360. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Lin, L., Cao, L., Zhang, C.: The fish-eye visualization of foreign currency exchange data streams. In: Asia-Pacific Symposium on Information Visualisation, pp. 91–96 (2005)Google Scholar
  15. 15.
    Marghescu, D.: Multidimensional Data Visualization Techniques for Financial Performance Data: A Review, TUCS Technical Report No 810, University of Turku, Finland (2007)Google Scholar
  16. 16.
    Merrit, C.: Mobile Money Transfer Services: The Next Phase in the Evolution in Person-to-Person Payments. Technical report. Retail Payments Risk Forum (2010)Google Scholar
  17. 17.
    Money Laundering and Terrorist Financing Trends in FINTRAC Cases Disclosed Between 2007 and 2011. FINTRAC Typologies and Trends Reports (2012)Google Scholar
  18. 18.
    Money Laundering using New Payment Methods. FATF Report (2010)Google Scholar
  19. 19.
    Neural-technologies. MinotaurTM Fraud Detection Software - Finance Sector,
  20. 20.
    Nice Actimize Integrated Fraud Management,
  21. 21.
    Novikova, E., Kotenko, I.: Analytical Visualization Techniques for Security Information and Event Management. In: 21st Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP 2013), pp. 519–525. IEEE Computer Society, Belfast (2013)CrossRefGoogle Scholar
  22. 22.
    Okutyi, E.: Safaricom tightens security on M-Pesa with fraud management system (2012),
  23. 23.
    Orange Money dépasse les 4 millions de clients et lance ses services en Jordanie et à Maurice (2012) (in French),
  24. 24.
    Prefuse Information Visualization toolkit,
  25. 25.
    Rieke, R., Coppolino, L., Hutchison, A., Prieto, E., Gaber, C.: Security and Reliability Requirements for Advanced Security Event Management. In: Kotenko, I., Skormin, V. (eds.) MMM-ACNS 2012. LNCS, vol. 7531, pp. 171–180. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  26. 26.
    Ron, D., Shamir, A.: Quantitative Analysis of the Full Bitcoin Transaction Graph. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 6–24. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  27. 27.
    SAS Fraud detection solutions, (viewed on the October 10, 2013)
  28. 28.
    Schreck, T., Tekusova, T., Kohlhammer, J., Fellner, D.: Trajectory-based visual analysis of large financial time series data. ACMSIGKDD Explorations Newsletter 9(2), 30–37 (2007)CrossRefGoogle Scholar
  29. 29.
    Second quarter of the financial year 2012/2013. Quarterly sector statistics report. Communications Commission of Kenya (2012)Google Scholar
  30. 30.
    Shneiderman, B.: Dynamic queries for visual information seeking. In: The Craft of Information Visualization: Readings and Reflections, pp. 14–21. Morgan Kaufman (2003)Google Scholar
  31. 31.
    Wattenberg, M.: Visualizing the stock market. In: CHI Extended Abstracts on Human Factors in Computing Systems, pp. 188–189 (1999)Google Scholar
  32. 32.
    Westphal, C.R.: Patterns for Financial Intelligence Units (FIUs) and Anti-Money Laundering (AML) Operations,
  33. 33.
    Ziegler, H., Jenny, M., Gruse, T., Keim, D.A.: Visual Market Sector Analysis for Financial Time Series Data. In: IEEE Symposium on Visual Analytics Science and Technology (VAST), October 25-26, pp. 83–90 (2010)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2014

Authors and Affiliations

  • Evgenia Novikova
    • 1
  • Igor Kotenko
    • 1
    • 2
  1. 1.Laboratory of Computer Security ProblemsSt. Petersburg Institute for Informatics and Automation (SPIIRAS)St. PetersburgRussia
  2. 2.Mechanics and OpticsSt. Petersburg National Research University of Information TechnologiesSaint-PetersburgRussia

Personalised recommendations