Immunological and Phenotypic Considerations in Supplementing Cardiac Biomaterials with Cells

  • S. Reed Plimpton
  • Wendy F. Liu
  • Arash KheradvarEmail author


The use of implantable biomaterials in cardiovascular system is growing, in part because of the improvement of biotechnology. These biomaterials provide opportunities for effective treatment of cardiovascular diseases with minimal associated morbidities. However, in doing so, there are concerns regarding the immune responses to these implants, and in particular, long-term reactions are crucial. The relatively recent advent of tissue engineered implants promises to revolutionize patient specific devices, yet it comes with the added complexity of understanding host–implant compatibility. In this chapter, we discuss the current comprehension related to immune reactions to implants, both cell-based and acellular. Tissue and organ rejection in the cardiovascular setting are discussed together with the immunologic considerations for grafts, patches, and heart valves. We explore the use of stem cells in cardiovascular bioprostheses as well as their associated advantages and potential risks. Lastly, potential future directions of tissue-engineered cardiac bioprostheses are discussed.


Mesenchymal Stem Cell Human Leukocyte Antigen Heart Valve Foreign Body Giant Cell Immunogenic Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abraham GA et al (2000) Evaluation of the porcine intestinal collagen layer as a biomaterial. J Biomed Mater Res 51(3):442–452MathSciNetCrossRefGoogle Scholar
  2. Abraham GA, de Queiroz AA, Roman JS (2001) Hydrophilic hybrid IPNs of segmented polyurethanes and copolymers of vinylpyrrolidone for applications in medicine. Biomaterials 22(14):1971–1985CrossRefGoogle Scholar
  3. Akins CW (1996a) Medtronic-Hall prosthetic aortic valve. Semin Thorac Cardiovasc Surg 8(3):242–248Google Scholar
  4. Akins CW (1996b) Long-term results with the Medtronic-Hall valvular prosthesis. Ann Thorac Surg 61(3):806–813CrossRefGoogle Scholar
  5. Alavi SH (2014) Towards development of hybrid engineered heart valves, University of California, IrvineGoogle Scholar
  6. Alavi SH, Kheradvar A (2011) Metal mesh scaffold for tissue engineering of membranes. Tissue Eng Part C Methods 18(4):293–301CrossRefGoogle Scholar
  7. Alavi SH, Liu WF, Kheradvar A (2013) Inflammatory response assessment of a hybrid tissue-engineered heart valve leaflet. Ann Biomed Eng 41(2):316–326CrossRefGoogle Scholar
  8. Allman AJ et al (2001) Xenogeneic extracellular matrix grafts elicit a TH2-restricted immune response. Transplantation 71(11):1631–1640CrossRefGoogle Scholar
  9. Allman AJ et al (2002) The Th2-restricted immune response to xenogeneic small intestinal submucosa does not influence systemic protective immunity to viral and bacterial pathogens. Tissue Eng 8(1):53–62CrossRefGoogle Scholar
  10. Amano J et al (2003) Cardiac myxoma: its origin and tumor characteristics. Ann Thorac Cardiovasc Surg 9(4):215–221Google Scholar
  11. Anderson JM, Rodriguez A, Chang DT (2008) Foreign body reaction to biomaterials. Semin Immunol 20(2):86–100CrossRefGoogle Scholar
  12. Andersson J et al (2005) Binding of C3 fragments on top of adsorbed plasma proteins during complement activation on a model biomaterial surface. Biomaterials 26(13):1477–1485CrossRefGoogle Scholar
  13. Awad MR et al (2001) The effect of cytokine gene polymorphisms on pediatric heart allograft outcome. J Heart Lung Transplant 20(6):625–630CrossRefGoogle Scholar
  14. Azzawi M et al (2001) Tumor necrosis factor-alpha gene polymorphism and death due to acute cellular rejection in a subgroup of heart transplant recipients. Hum Immunol 62(2):140–142CrossRefGoogle Scholar
  15. Bach FH et al (1997) Accommodation of vascularized xenografts: expression of “protective genes” by donor endothelial cells in a host Th2 cytokine environment. Nat Med 3(2):196–204CrossRefGoogle Scholar
  16. Badylak SF, Gilbert TW (2008) Immune response to biologic scaffold materials. Semin Immunol 20(2):109–116CrossRefGoogle Scholar
  17. Badylak SF et al (2001) Marrow-derived cells populate scaffolds composed of xenogeneic extracellular matrix. Exp Hematol 29(11):1310–1318CrossRefGoogle Scholar
  18. Badylak S et al (2002) Morphologic study of small intestinal submucosa as a body wall repair device. J Surg Res 103(2):190–202CrossRefGoogle Scholar
  19. Badylak SF et al (2008) Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng Part A 14(11):1835–1842CrossRefGoogle Scholar
  20. Bakaeen FG et al (2003) Surgical outcome in 85 patients with primary cardiac tumors. Am J Surg 186(6):641–647, discussion 647CrossRefGoogle Scholar
  21. Batten P, Sarathchandra P, Antoniw JW, Tay SS, Lowdell MW, Taylor PM, Yacoub MH (2006) Human mesenchymal stem cells induce t cell anergy and downregulate T cell allo-responses via the TH2 pathway: relevance to tissue engineering human heart valves. Tissue Eng 12(8):2263–2273CrossRefGoogle Scholar
  22. Batten P, Rosenthal NA, Yacoub MH (2007) Immune response to stem cells and strategies to induce tolerance. Philos Trans R Soc Lond B Biol Sci 362(1484):1343–1356CrossRefGoogle Scholar
  23. Baudet EM et al (1995) Long-term results of valve replacement with the St. Jude Medical prosthesis. J Thorac Cardiovasc Surg 109(5):858–870CrossRefGoogle Scholar
  24. Bechtel JF, Stierle U, Sievers HH (2008) Fifty-two months’ mean follow up of decellularized SynerGraft-treated pulmonary valve allografts. J Heart Valve Dis 17(1):98–104, discussion 104Google Scholar
  25. Beltrami AP et al (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114(6):763–776CrossRefGoogle Scholar
  26. Bernasconi M et al (1996) Induction of apoptosis in rhabdomyosarcoma cells through down-regulation of PAX proteins. Proc Natl Acad Sci U S A 93(23):13164–13169CrossRefGoogle Scholar
  27. Bernet F, Stulz PM, Carrel TP (1998) Long-term remission after resection, chemotherapy, and irradiation of a metastatic myxoma. Ann Thorac Surg 66(5):1791–1792CrossRefGoogle Scholar
  28. Bloomfield P et al (1991) Twelve-year comparison of a Bjork-Shiley mechanical heart valve with porcine bioprostheses. N Engl J Med 324(9):573–579CrossRefGoogle Scholar
  29. Bonhoeffer P et al (2000) Percutaneous replacement of pulmonary valve in a right-ventricle to pulmonary-artery prosthetic conduit with valve dysfunction. Lancet 356(9239):1403–1405CrossRefGoogle Scholar
  30. Bouten C et al (2011) Substrates for cardiovascular tissue engineering. Adv Drug Deliv Rev 63(4):221–241CrossRefGoogle Scholar
  31. Breuer CK et al (2004) Application of tissue-engineering principles toward the development of a semilunar heart valve substitute. Tissue Eng 10(11–12):1725–1736CrossRefGoogle Scholar
  32. Brown BN et al (2009) Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials 30(8):1482–1491CrossRefGoogle Scholar
  33. Buhler L et al (2000) High-dose porcine hematopoietic cell transplantation combined with CD40 ligand blockade in baboons prevents an induced anti-pig humoral response. Transplantation 69(11):2296–2304CrossRefGoogle Scholar
  34. Buhler L et al (2001) CD40-CD154 pathway blockade requires host macrophages to induce humoral unresponsiveness to pig hematopoietic cells in baboons. Transplantation 72(11):1759–1768CrossRefGoogle Scholar
  35. Burke AP, Cowan D, Virmani R (1992) Primary sarcomas of the heart. Cancer 69(2):387–395CrossRefGoogle Scholar
  36. Butany J et al (2005) Cardiac tumours: diagnosis and management. Lancet Oncol 6(4):219–228CrossRefGoogle Scholar
  37. Caralps JM et al (2005) Complete surgical excision of a huge left ventricular fibroma. J Thorac Cardiovasc Surg 129(6):1444–1445CrossRefGoogle Scholar
  38. Carpentier A et al (1969) Biological factors affecting long-term results of valvular heterografts. J Thorac Cardiovasc Surg 58(4):467–483Google Scholar
  39. Cartier PC et al (1999) Clinical and hemodynamic performance of the Freestyle aortic root bioprosthesis. Ann Thorac Surg 67(2):345–349, discussion 349–51CrossRefGoogle Scholar
  40. Caspi O et al (2007) Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ Res 100(2):263–272CrossRefGoogle Scholar
  41. Chen N, Field EH (1995) Enhanced type 2 and diminished type 1 cytokines in neonatal tolerance. Transplantation 59(7):933–941CrossRefGoogle Scholar
  42. Chen G et al (2005) Acute rejection is associated with antibodies to non-Gal antigens in baboons using Gal-knockout pig kidneys. Nat Med 11(12):1295–1298CrossRefGoogle Scholar
  43. Cohn LH et al (1989) Fifteen-year experience with 1678 Hancock porcine bioprosthetic heart valve replacements. Ann Surg 210(4):435–442, discussion 442–3CrossRefGoogle Scholar
  44. Consigny PM (2000) Endothelial cell seeding on prosthetic surfaces. J Long Term Eff Med Implants 10(1–2):79–95Google Scholar
  45. Cozzi E, White DJ (1995) The generation of transgenic pigs as potential organ donors for humans. Nat Med 1(9):964–966CrossRefGoogle Scholar
  46. Crespo-Leiro MG et al (2005) Humoral heart rejection (severe allograft dysfunction with no signs of cellular rejection or ischemia): incidence, management, and the value of C4d for diagnosis. Am J Transplant 5(10):2560–2564CrossRefGoogle Scholar
  47. Dalmasso AP et al (1992) Mechanism of complement activation in the hyperacute rejection of porcine organs transplanted into primate recipients. Am J Pathol 140(5):1157–1166Google Scholar
  48. DePalma VA et al (1972) Investigation of three-surface properties of several metals and their relation to blood compatibility. J Biomed Mater Res 6(4):37–75MathSciNetCrossRefGoogle Scholar
  49. Dichek DA et al (1989) Seeding of intravascular stents with genetically engineered endothelial cells. Circulation 80(5):1347–1353CrossRefGoogle Scholar
  50. Drukker M et al (2002) Characterization of the expression of MHC proteins in human embryonic stem cells. Proc Natl Acad Sci U S A 99(15):9864–9869CrossRefGoogle Scholar
  51. Dunn PF et al (1996) Seeding of vascular grafts with genetically modified endothelial cells. Secretion of recombinant TPA results in decreased seeded cell retention in vitro and in vivo. Circulation 93(7):1439–1446CrossRefGoogle Scholar
  52. Eisen HJ et al (1999) Safety, tolerability and efficacy of cyclosporine microemulsion in heart transplant recipients: a randomized, multicenter, double-blind comparison with the oil based formulation of cyclosporine–results at six months after transplantation. Transplantation 68(5):663–671CrossRefGoogle Scholar
  53. Ekdahl KN et al (2011) Innate immunity activation on biomaterial surfaces: a mechanistic model and coping strategies. Adv Drug Deliv Rev 63(12):1042–1050CrossRefGoogle Scholar
  54. Eliaz N, Nissan O (2007) Innovative processes for electropolishing of medical devices made of stainless steels. J Biomed Mater Res A 83(2):546–557CrossRefGoogle Scholar
  55. Fang NT et al (2007) Construction of tissue-engineered heart valves by using decellularized scaffolds and endothelial progenitor cells. Chin Med J (Engl) 120(8):696–702Google Scholar
  56. Fedoseyeva EV et al (2002) Modulation of tissue-specific immune response to cardiac myosin can prolong survival of allogeneic heart transplants. J Immunol 169(3):1168–1174CrossRefGoogle Scholar
  57. Filova E et al (2009) Tissue-engineered heart valves. Physiol Res 58(Suppl 2):S141–S158Google Scholar
  58. Flanagan TC et al (2007) The in vitro development of autologous fibrin-based tissue-engineered heart valves through optimised dynamic conditioning. Biomaterials 28(23):3388–3397CrossRefGoogle Scholar
  59. Gabbay S et al (1984) Calcification of implanted xenograft pericardium. Influence of site and function. J Thorac Cardiovasc Surg 87(5):782–787Google Scholar
  60. Gandaglia A et al (2011) Cells, scaffolds and bioreactors for tissue-engineered heart valves: a journey from basic concepts to contemporary developmental innovations. Eur J Cardiothorac Surg 39(4):523–531CrossRefGoogle Scholar
  61. Geha AS et al (1979) Late failure of porcine valve heterografts in children. J Thorac Cardiovasc Surg 78(3):351–364Google Scholar
  62. Giancotti FG, Ruoslahti E (1999) Integrin signaling. Science 285(5430):1028–1032CrossRefGoogle Scholar
  63. Gilbert TW et al (2007) Degradation and remodeling of small intestinal submucosa in canine Achilles tendon repair. J Bone Joint Surg Am 89(3):621–630CrossRefGoogle Scholar
  64. Golomb G et al (1987) The role of glutaraldehyde-induced cross-links in calcification of bovine pericardium used in cardiac valve bioprostheses. Am J Pathol 127(1):122–130Google Scholar
  65. Gorbet MB, Sefton MV (2004) Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials 25(26):5681–5703CrossRefGoogle Scholar
  66. Gowdamarajan A, Michler RE (2000) Therapy for primary cardiac tumors: is there a role for heart transplantation? Curr Opin Cardiol 15(2):121–125CrossRefGoogle Scholar
  67. Grabenwoger M et al (2000) Different modes of degeneration in autologous and heterologous heart valve prostheses. J Heart Valve Dis 9(1):104–109, discussion 110–1Google Scholar
  68. Haas A (2007) The phagosome: compartment with a license to kill. Traffic 8(4):311–330MathSciNetCrossRefGoogle Scholar
  69. Hammermeister KE et al (1993) A comparison of outcomes in men 11 years after heart-valve replacement with a mechanical valve or bioprosthesis. N Engl J Med 328(18):1289–1296CrossRefGoogle Scholar
  70. Hammond EH et al (1989) Vascular (humoral) rejection in heart transplantation: pathologic observations and clinical implications. J Heart Transplant 8(6):430–443Google Scholar
  71. Hare JM et al (2012) Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA 308(22):2369–2379CrossRefGoogle Scholar
  72. Hashi CK et al (2007) Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts. Proc Natl Acad Sci U S A 104(29):11915–11920CrossRefGoogle Scholar
  73. He W et al (2005) Fabrication and endothelialization of collagen-blended biodegradable polymer nanofibers: potential vascular graft for blood vessel tissue engineering. Tissue Eng 11(9–10):1574–1588CrossRefGoogle Scholar
  74. Hecker JF, Scandrett LA (1985) Roughness and thrombogenicity of the outer surfaces of intravascular catheters. J Biomed Mater Res 19(4):381–395CrossRefGoogle Scholar
  75. Henson PM (1971a) The immunologic release of constituents from neutrophil leukocytes. I. The role of antibody and complement on nonphagocytosable surfaces or phagocytosable particles. J Immunol 107(6):1535–1546Google Scholar
  76. Henson PM (1971b) The immunologic release of constituents from neutrophil leukocytes. II. Mechanisms of release during phagocytosis, and adherence to nonphagocytosable surfaces. J Immunol 107(6):1547–1557Google Scholar
  77. Hilfiker A et al (2011) Mesenchymal stem cells and progenitor cells in connective tissue engineering and regenerative medicine: is there a future for transplantation? Langenbecks Arch Surg 396(4):489–497CrossRefGoogle Scholar
  78. Hoerstrup SP et al (2000) Functional living trileaflet heart valves grown in vitro. Circulation 102(90003):III-44–III-49Google Scholar
  79. Hoffman FM (2005) Outcomes and complications after heart transplantation: a review. J Cardiovasc Nurs 20(5 Suppl):S31–S42CrossRefGoogle Scholar
  80. Hoffmeier A et al (2005) Neoplastic heart disease – the Muenster experience with 108 patients. Thorac Cardiovasc Surg 53(1):1–8CrossRefGoogle Scholar
  81. Hruban RH et al (1990) Accelerated arteriosclerosis in heart transplant recipients is associated with a T-lymphocyte-mediated endothelialitis. Am J Pathol 137(4):871–882Google Scholar
  82. Iturbe-Alessio I et al (1986) Risks of anticoagulant therapy in pregnant women with artificial heart valves. N Engl J Med 315(22):1390–1393CrossRefGoogle Scholar
  83. Jamieson WR et al (2005) Carpentier-Edwards supra-annular aortic porcine bioprosthesis: clinical performance over 20 years. J Thorac Cardiovasc Surg 130(4):994–1000CrossRefGoogle Scholar
  84. Jamieson WR et al (2011) Medtronic Mosaic porcine bioprosthesis: assessment of 12-year performance. J Thorac Cardiovasc Surg 142(2):302–7.e2CrossRefGoogle Scholar
  85. Jarcho J et al (1994) Influence of HLA mismatch on rejection after heart transplantation: a multiinstitutional study. The Cardiac Transplant Research Database Group. J Heart Lung Transplant 13(4):583–595, discussion 595–6Google Scholar
  86. Jarman-Smith ML et al (2004) Porcine collagen crosslinking, degradation and its capability for fibroblast adhesion and proliferation. J Mater Sci Mater Med 15(8):925–932CrossRefGoogle Scholar
  87. Jenney CR, Anderson JM (2000) Adsorbed serum proteins responsible for surface dependent human macrophage behavior. J Biomed Mater Res 49(4):435–447CrossRefGoogle Scholar
  88. Joner M et al (2006) Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol 48(1):193–202CrossRefGoogle Scholar
  89. Juthier F et al (2006) Decellularized heart valve as a scaffold for in vivo recellularization: deleterious effects of granulocyte colony-stimulating factor. J Thorac Cardiovasc Surg 131(4):843–852CrossRefGoogle Scholar
  90. Kandemir O et al (2006) St. Jude Medical and CarboMedics mechanical heart valves in the aortic position: comparison of long-term results. Tex Heart Inst J 33(2):154–159Google Scholar
  91. Kfoury AG et al (2006) Impact of repetitive episodes of antibody-mediated or cellular rejection on cardiovascular mortality in cardiac transplant recipients: defining rejection patterns. J Heart Lung Transplant 25(11):1277–1282CrossRefGoogle Scholar
  92. Kfoury AG et al (2009) Cardiovascular mortality among heart transplant recipients with asymptomatic antibody-mediated or stable mixed cellular and antibody-mediated rejection. J Heart Lung Transplant 28(8):781–784CrossRefGoogle Scholar
  93. Kim JI et al (2013) Elevated levels of interferon-gamma production by memory T cells do not promote transplant tolerance resistance in aged recipients. PLoS One 8(12):e82856CrossRefGoogle Scholar
  94. Kim YK et al (2014) Modification of biomaterials with a self-protein inhibits the macrophage response. Adv Healthc Mater 3:989CrossRefGoogle Scholar
  95. Kobashigawa J et al (1998) A randomized active-controlled trial of mycophenolate mofetil in heart transplant recipients. Mycophenolate Mofetil Investigators. Transplantation 66(4):507–515CrossRefGoogle Scholar
  96. Kobayashi T, Cooper DK (1999) Anti-Gal, alpha-Gal epitopes, and xenotransplantation. Subcell Biochem 32:229–257Google Scholar
  97. Kon ND et al (2002) Eight-year results of aortic root replacement with the freestyle stentless porcine aortic root bioprosthesis. Ann Thorac Surg 73(6):1817–1821, discussion 1821CrossRefGoogle Scholar
  98. Konakci KZ et al (2005) Alpha-Gal on bioprostheses: xenograft immune response in cardiac surgery. Eur J Clin Invest 35(1):17–23CrossRefGoogle Scholar
  99. L’Heureux N et al (2006) Human tissue-engineered blood vessels for adult arterial revascularization. Nat Med 12(3):361–365CrossRefGoogle Scholar
  100. Laflamme MA, Murry CE (2005) Regenerating the heart. Nat Biotechnol 23(7):845–856CrossRefGoogle Scholar
  101. Lai L et al (2002) Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295(5557):1089–1092CrossRefGoogle Scholar
  102. Lakshmanan R, Krishnan UM, Sethuraman S (2012) Living cardiac patch: the elixir for cardiac regeneration. Expert Opin Biol Ther 12(12):1623–1640CrossRefGoogle Scholar
  103. Lee JH et al (1998) Platelet adhesion onto chargeable functional group gradient surfaces. J Biomed Mater Res 40(2):180–186CrossRefGoogle Scholar
  104. Leprince P et al (1999) Posttransplantation cytotoxic immunoglobulin G is associated with a high rate of acute allograft dysfunctions in heart transplant recipients. Am Heart J 138(3 Pt 1):586–592CrossRefGoogle Scholar
  105. Leung JM et al (2014) Surface modification of polydimethylsiloxane with a covalent antithrombin-heparin complex to prevent thrombosis. J Biomater Sci Polym Ed 25:786CrossRefGoogle Scholar
  106. Li F et al (2004) Low-molecular-weight peptides derived from extracellular matrix as chemoattractants for primary endothelial cells. Endothelium 11(3–4):199–206CrossRefGoogle Scholar
  107. Li X et al (2011) Current usage and future directions for the bovine pericardial patch. Ann Vasc Surg 25(4):561–568zbMATHCrossRefGoogle Scholar
  108. Libby P, Pober JS (2001) Chronic rejection. Immunity 14(4):387–397CrossRefGoogle Scholar
  109. Lichtenberg A et al (2006) Preclinical testing of tissue-engineered heart valves re-endothelialized under simulated physiological conditions. Circulation 114(1 Suppl):I559–I565Google Scholar
  110. Lila N et al (2010) Gal knockout pig pericardium: new source of material for heart valve bioprostheses. J Heart Lung Transplant 29(5):538–543CrossRefGoogle Scholar
  111. Lindenfeld J et al (2004) Drug therapy in the heart transplant recipient: part I: cardiac rejection and immunosuppressive drugs. Circulation 110(24):3734–3740CrossRefGoogle Scholar
  112. Love JW et al (1992) Experimental evaluation of an autologous tissue heart valve. J Heart Valve Dis 1(2):232–241Google Scholar
  113. Lowe HC, Oesterle SN, Khachigian LM (2002) Coronary in-stent restenosis: current status and future strategies. J Am Coll Cardiol 39(2):183–193CrossRefGoogle Scholar
  114. Lutter G et al (2010) Percutaneous tissue-engineered pulmonary valved stent implantation. Ann Thorac Surg 89(1):259–263CrossRefGoogle Scholar
  115. Magilligan DJ Jr et al (1985) The porcine bioprosthetic valve. Twelve years later. J Thorac Cardiovasc Surg 89(4):499–507Google Scholar
  116. Magilligan DJ Jr et al (1989) The porcine bioprosthetic heart valve: experience at 15 years. Ann Thorac Surg 48(3):324–329, discussion 330CrossRefGoogle Scholar
  117. Mani G et al (2007) Coronary stents: a materials perspective. Biomaterials 28(9):1689–1710CrossRefGoogle Scholar
  118. Manji RA et al (2006) Glutaraldehyde-fixed bioprosthetic heart valve conduits calcify and fail from xenograft rejection. Circulation 114(4):318–327CrossRefGoogle Scholar
  119. Manji RA et al (2012) Porcine bioprosthetic heart valves: the next generation. Am Heart J 164(2):177–185CrossRefGoogle Scholar
  120. Matthews AM (1998) The development of the Starr-Edwards heart valve. Tex Heart Inst J 25(4):282–293Google Scholar
  121. McGregor CG et al (2011) Cardiac xenotransplantation technology provides materials for improved bioprosthetic heart valves. J Thorac Cardiovasc Surg 141(1):269–275MathSciNetCrossRefGoogle Scholar
  122. Mehta RH et al (2009) Reoperation for bleeding in patients undergoing coronary artery bypass surgery: incidence, risk factors, time trends, and outcomes. Circ Cardiovasc Qual Outcomes 2(6):583–590CrossRefGoogle Scholar
  123. Mendelson K, Schoen F (2006) Heart valve tissue engineering: concepts, approaches, progress, and challenges. Ann Biomed Eng 34(12):1799–1819CrossRefGoogle Scholar
  124. Mendoza CE, Rosado MF, Bernal L (2001) The role of interleukin-6 in cases of cardiac myxoma. Clinical features, immunologic abnormalities, and a possible role in recurrence. Tex Heart Inst J 28(1):3–7Google Scholar
  125. Michaels PJ et al (2003) Humoral rejection in cardiac transplantation: risk factors, hemodynamic consequences and relationship to transplant coronary artery disease. J Heart Lung Transplant 22(1):58–69CrossRefGoogle Scholar
  126. Milano A et al (1984) Calcific degeneration as the main cause of porcine bioprosthetic valve failure. Am J Cardiol 53(8):1066–1070CrossRefGoogle Scholar
  127. Milas M et al (2000) Adenovirus-mediated p53 gene therapy inhibits human sarcoma tumorigenicity. Cancer Gene Ther 7(3):422–429CrossRefGoogle Scholar
  128. Mitchell RN (2009) Graft vascular disease: immune response meets the vessel wall. Annu Rev Pathol 4:19–47CrossRefGoogle Scholar
  129. Momand J et al (1992) The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69(7):1237–1245CrossRefGoogle Scholar
  130. Nau GJ et al (1997) A chemoattractant cytokine associated with granulomas in tuberculosis and silicosis. Proc Natl Acad Sci U S A 94(12):6414–6419CrossRefGoogle Scholar
  131. Nazneen F et al (2012) Surface chemical and physical modification in stent technology for the treatment of coronary artery disease. J Biomed Mater Res B Appl Biomater 100(7):1989–2014CrossRefGoogle Scholar
  132. Neragi-Miandoab S, Kim J, Vlahakes GJ (2007) Malignant tumours of the heart: a review of tumour type, diagnosis and therapy. Clin Oncol (R Coll Radiol) 19(10):748–756CrossRefGoogle Scholar
  133. Nguyen K, Shih-Horng S, Zilberman M, Bohluli P, Frenkel P, Tang L, Eberhart R, Timmons R (2004) Biomaterial and stent technology. Tissue engineering and novel delivery systems. CRC Press, Boca Raton, FLGoogle Scholar
  134. Nilsson B et al (2007) The role of complement in biomaterial-induced inflammation. Mol Immunol 44(1–3):82–94MathSciNetCrossRefGoogle Scholar
  135. Nishio S et al (2014) Decade of histological follow-up for a fully biodegradable poly-l-lactic acid coronary stent (Igaki-Tamai Stent) in humans: are bioresorbable scaffolds the answer? Circulation 129(4):534–535MathSciNetCrossRefGoogle Scholar
  136. Noiseux N et al (2006) Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Mol Ther 14(6):840–850CrossRefGoogle Scholar
  137. Nussbaum J et al (2007) Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J 21(7):1345–1357CrossRefGoogle Scholar
  138. O’Brien B, Carroll W (2009) The evolution of cardiovascular stent materials and surfaces in response to clinical drivers: a review. Acta Biomater 5(4):945–958CrossRefGoogle Scholar
  139. O’Brien MF et al (1995) Allograft aortic valve replacement: long-term follow-up. Ann Thorac Surg 60(2 Suppl):S65–S70CrossRefGoogle Scholar
  140. Ostuni E, Chapman R, Holmlin RE, Takayama S, Whitesides GM (2001) A survey of structure-property relationships of surfaces that resist adsorption of protein. Langmuir 17(18):5605–5620CrossRefGoogle Scholar
  141. Phelps CJ et al (2003) Production of alpha 1,3-galactosyltransferase-deficient pigs. Science 299(5605):411–414CrossRefGoogle Scholar
  142. Piccotti JR et al (1997) Are Th2 helper T lymphocytes beneficial, deleterious, or irrelevant in promoting allograft survival? Transplantation 63(5):619–624CrossRefGoogle Scholar
  143. Pok S, Jacot JG (2011) Biomaterials advances in patches for congenital heart defect repair. J Cardiovasc Transl Res 4(5):646–654CrossRefGoogle Scholar
  144. Press OW, Livingston R (1987) Management of malignant pericardial effusion and tamponade. JAMA 257(8):1088–1092CrossRefGoogle Scholar
  145. Pucci A et al (2000) Histopathologic and clinical characterization of cardiac myxoma: review of 53 cases from a single institution. Am Heart J 140(1):134–138CrossRefGoogle Scholar
  146. Putnam JB Jr et al (1991) Primary cardiac sarcomas. Ann Thorac Surg 51(6):906–910CrossRefGoogle Scholar
  147. Qu Z et al (2014) Immobilization of actively thromboresistant assemblies on sterile blood-contacting surfaces. Adv Healthc Mater 3(1):30–35CrossRefGoogle Scholar
  148. Rabkin E, Schoen FJ (2002) Cardiovascular tissue engineering. Cardiovasc Pathol 11(6):305–317CrossRefGoogle Scholar
  149. Rabkin-Aikawa E, Mayer JE Jr, Schoen FJ (2005) Heart valve regeneration. Adv Biochem Eng Biotechnol 94:141–179Google Scholar
  150. Record RD et al (2001) In vivo degradation of 14C-labeled small intestinal submucosa (SIS) when used for urinary bladder repair. Biomaterials 22(19):2653–2659CrossRefGoogle Scholar
  151. Reed EF et al (2006) Acute antibody-mediated rejection of cardiac transplants. J Heart Lung Transplant 25(2):153–159CrossRefGoogle Scholar
  152. Reemtsma K (1989) Vascular immunoobliterative disease: a common cause of graft failure. Transplant Proc 21(4):3706Google Scholar
  153. Rieder E et al (2005) Tissue engineering of heart valves: decellularized porcine and human valve scaffolds differ importantly in residual potential to attract monocytic cells. Circulation 111(21):2792–2797CrossRefGoogle Scholar
  154. Riess FC et al (2007) Hemodynamic performance of the Medtronic Mosaic porcine bioprosthesis up to ten years. Ann Thorac Surg 83(4):1310–1318CrossRefGoogle Scholar
  155. Rippel RA, Ghanbari H, Seifalian AM (2012) Tissue-engineered heart valve: future of cardiac surgery. World J Surg 36(7):1581–1591CrossRefGoogle Scholar
  156. Rose AG et al (1991) Histopathology of hyperacute rejection of the heart: experimental and clinical observations in allografts and xenografts. J Heart Lung Transplant 10(2):223–234Google Scholar
  157. Rose DM, Alon R, Ginsberg MH (2007) Integrin modulation and signaling in leukocyte adhesion and migration. Immunol Rev 218:126–134CrossRefGoogle Scholar
  158. Sacks MS, Schoen FJ, Mayer JE (2009) Bioengineering challenges for heart valve tissue engineering. Annu Rev Biomed Eng 11(1):289–313CrossRefGoogle Scholar
  159. Saleem S et al (1996) Acute rejection of vascularized heart allografts in the absence of IFNgamma. Transplantation 62(12):1908–1911CrossRefGoogle Scholar
  160. Salomon RN et al (1991) Human coronary transplantation-associated arteriosclerosis. Evidence for a chronic immune reaction to activated graft endothelial cells. Am J Pathol 138(4):791–798Google Scholar
  161. Sanganalmath SK, Bolli R (2013) Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circ Res 113(6):810–834CrossRefGoogle Scholar
  162. Schmidt D et al (2010) Minimally-invasive implantation of living tissue engineered heart valves. A comprehensive approach from autologous vascular cells to stem cells. J Am Coll Cardiol 56(6):510–520CrossRefGoogle Scholar
  163. Schoen FJ (1998) Pathologic findings in explanted clinical bioprosthetic valves fabricated from photooxidized bovine pericardium. J Heart Valve Dis 7(2):174–179MathSciNetGoogle Scholar
  164. Schoen FJ (2011) Heart valve tissue engineering: quo vadis? Curr Opin Biotechnol 22(5):698–705CrossRefGoogle Scholar
  165. Schoen FJ, Levy RJ (2005) Calcification of tissue heart valve substitutes: progress toward understanding and prevention. Ann Thorac Surg 79(3):1072–1080CrossRefGoogle Scholar
  166. Schoen FJ, Collins JJ Jr, Cohn LH (1983) Long-term failure rate and morphologic correlations in porcine bioprosthetic heart valves. Am J Cardiol 51(6):957–964CrossRefGoogle Scholar
  167. Schoen FJ et al (1987) Causes of failure and pathologic findings in surgically removed Ionescu-Shiley standard bovine pericardial heart valve bioprostheses: emphasis on progressive structural deterioration. Circulation 76(3):618–627CrossRefGoogle Scholar
  168. Seino Y, Ikeda U, Shimada K (1993) Increased expression of interleukin 6 mRNA in cardiac myxomas. Br Heart J 69(6):565–567CrossRefGoogle Scholar
  169. Shabalovskaya SA (1996) On the nature of the biocompatibility and on medical applications of NiTi shape memory and superelastic alloys. Biomed Mater Eng 6(4):267–289Google Scholar
  170. Shinoka T, Breuer CK, Tanel RE, Zund G, Miura T, Ma PX, Langer R, Vacanti JP, Mayer JE Jr (1995) Tissue engineering heart valves: valve leaflet replacement study in a lamb model. Ann Thorac Surg 60(6 Suppl):S513–S516CrossRefGoogle Scholar
  171. Shinoka T, Ma PX, Shum-Tim D, Breuer CK, Cusick RA, Zund G, Langer R, Vacanti JP, Mayer JE Jr (1996) Tissue-engineered heart valves. Autologous valve leaflet replacement study in a lamb model. Circulation 94(9 Suppl):164–168Google Scholar
  172. Shirota T et al (2003) Human endothelial progenitor cell-seeded hybrid graft: proliferative and antithrombogenic potentials in vitro and fabrication processing. Tissue Eng 9(1):127–136MathSciNetCrossRefGoogle Scholar
  173. Silva GV et al (2005) Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 111(2):150–156CrossRefGoogle Scholar
  174. Simionescu DT (2004) Prevention of calcification in bioprosthetic heart valves: challenges and perspectives. Expert Opin Biol Ther 4(12):1971–1985CrossRefGoogle Scholar
  175. Simon P et al (2003) Early failure of the tissue engineered porcine heart valve SYNERGRAFT in pediatric patients. Eur J Cardiothorac Surg 23(6):1002–1006, discussion 1006CrossRefGoogle Scholar
  176. Smith JD et al (1995) Humoral immune response to human aortic valve homografts. Ann Thorac Surg 60(2 Suppl):S127–S130CrossRefGoogle Scholar
  177. Sodian R, Lueders C, Kraemer L, Kuebler W, Shakibaei M, Reichart B, Daebritz S, Hetzer R (2006) Tissue engineering of autologous human heart valves using cryopreserved vascular umbilical cord cells. Ann Thorac Surg 81:2207–2216CrossRefGoogle Scholar
  178. Stachelek SJ et al (2011) The effect of CD47 modified polymer surfaces on inflammatory cell attachment and activation. Biomaterials 32(19):4317–4326CrossRefGoogle Scholar
  179. Starr A, Edwards ML (1961) Mitral replacement: the shielded ball valve prosthesis. J Thorac Cardiovasc Surg 42:673–682Google Scholar
  180. Stein PD et al (1988) Leukocytes, platelets, and surface microstructure of spontaneously degenerated porcine bioprosthetic valves. J Card Surg 3(3):253–261CrossRefGoogle Scholar
  181. Steinhoff G et al (2000) Tissue engineering of pulmonary heart valves on allogenic acellular matrix conduits: in vivo restoration of valve tissue. Circulation 102(90003):III-50–III-55Google Scholar
  182. Sutherland FW et al (2005) From stem cells to viable autologous semilunar heart valve. Circulation 111(21):2783–2791CrossRefGoogle Scholar
  183. Swijnenburg RJ et al (2005) Embryonic stem cell immunogenicity increases upon differentiation after transplantation into ischemic myocardium. Circulation 112(9 Suppl):I166–I172Google Scholar
  184. Swijnenburg RJ et al (2008) Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell xenografts. Proc Natl Acad Sci U S A 105(35):12991–12996CrossRefGoogle Scholar
  185. Syedain ZH, Tranquillo RT (2009) Controlled cyclic stretch bioreactor for tissue-engineered heart valves. Biomaterials 30(25):4078–4084CrossRefGoogle Scholar
  186. Takeuchi M, Kuratani T, Miyagawa S, Shirakawa Y, Shimamura K, Kin K, Yoshida T, Arai Y, Hoashi T, Teramoto N, Hirakawa K, Kawaguchi N, Sawa Y (2014) Tissue-engineered stent-graft integrates with aortic wall by recruiting host tissue into graft scaffold. J Thorac Cardiovasc Surg (in press)Google Scholar
  187. Talbert WM Jr, Wright P (1982) Acute aortic stenosis of a porcine valve heterograft apparently caused by graft rejection: case report with discussion of immune mediated host response. Tex Heart Inst J 9(2):225–229Google Scholar
  188. Tang L, Jennings TA, Eaton JW (1998) Mast cells mediate acute inflammatory responses to implanted biomaterials. Proc Natl Acad Sci U S A 95(15):8841–8846CrossRefGoogle Scholar
  189. Thevenot P, Hu W, Tang L (2008) Surface chemistry influences implant biocompatibility. Curr Top Med Chem 8(4):270–280CrossRefGoogle Scholar
  190. Thierry B et al (2002) Nitinol versus stainless steel stents: acute thrombogenicity study in an ex vivo porcine model. Biomaterials 23(14):2997–3005CrossRefGoogle Scholar
  191. Thomson DJ et al (2001) Medtronic Mosaic porcine bioprosthesis: midterm investigational trial results. Ann Thorac Surg 71(5 Suppl):S269–S272CrossRefGoogle Scholar
  192. Totaro P et al (2005) Carpentier-Edwards PERIMOUNT Magna bioprosthesis: a stented valve with stentless performance? J Thorac Cardiovasc Surg 130(6):1668–1674CrossRefGoogle Scholar
  193. Tu Q et al (2013) Effect of tissue specificity on the performance of extracellular matrix in improving endothelialization of cardiovascular implants. Tissue Eng Part A 19(1–2):91–102CrossRefGoogle Scholar
  194. Turner D, Grant S, Yonan N, Sheldon S, Dyer PA, Sinnott PJ, Hutchinson IV (1997) Cytokine gene polymorphism and heart transplant rejection. Transplantation 64(5):776–779CrossRefGoogle Scholar
  195. Urbanek K et al (2005) Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proc Natl Acad Sci U S A 102(24):8692–8697CrossRefGoogle Scholar
  196. Valentin JE et al (2006) Extracellular matrix bioscaffolds for orthopaedic applications. A comparative histologic study. J Bone Joint Surg Am 88(12):2673–2686CrossRefGoogle Scholar
  197. van der Laan JS et al (1991) TFE-plasma polymerized dermal sheep collagen for the repair of abdominal wall defects. Int J Artif Organs 14(10):661–666Google Scholar
  198. van Wachem PB et al (1994) Tissue regenerating capacity of carbodiimide-crosslinked dermal sheep collagen during repair of the abdominal wall. Int J Artif Organs 17(4):230–239Google Scholar
  199. Vander Salm TJ (2000) Unusual primary tumors of the heart. Semin Thorac Cardiovasc Surg 12(2):89–100Google Scholar
  200. Vesely I (2005) Heart valve tissue engineering. Circ Res 97(8):743–755CrossRefGoogle Scholar
  201. Virmani R, Farb A (1999) Pathology of in-stent restenosis. Curr Opin Lipidol 10(6):499–506CrossRefGoogle Scholar
  202. Vogt F et al (2004) Long-term assessment of a novel biodegradable paclitaxel-eluting coronary polylactide stent. Eur Heart J 25(15):1330–1340CrossRefGoogle Scholar
  203. Wan S et al (1996) Human cytokine responses to cardiac transplantation and coronary artery bypass grafting. J Thorac Cardiovasc Surg 111(2):469–477CrossRefGoogle Scholar
  204. Wang X (2013) Overview on biocompatibilities of implantable biomaterials. In: Pignatello R (ed) Advances in biomaterials science and biomedical applications. InTech Open, Rijeka, CroatiaGoogle Scholar
  205. Welters MJ et al (2002) A broad and strong humoral immune response to donor HLA after implantation of cryopreserved human heart valve allografts. Hum Immunol 63(11):1019–1025CrossRefGoogle Scholar
  206. Wilhelmi MH et al (2003) Role of inflammation in allogeneic and xenogeneic heart valve degeneration: immunohistochemical evaluation of inflammatory endothelial cell activation. J Heart Valve Dis 12(4):520–526Google Scholar
  207. Wilson CJ et al (2005) Mediation of biomaterial-cell interactions by adsorbed proteins: a review. Tissue Eng 11(1–2):1–18CrossRefGoogle Scholar
  208. Wu GW et al (2009) Asymptomatic antibody-mediated rejection after heart transplantation predicts poor outcomes. J Heart Lung Transplant 28(5):417–422CrossRefGoogle Scholar
  209. Wu YQ et al (2011) Protection of nonself surfaces from complement attack by factor H-binding peptides: implications for therapeutic medicine. J Immunol 186(7):4269–4277CrossRefGoogle Scholar
  210. Xia Z, Triffitt JT (2006) A review on macrophage responses to biomaterials. Biomed Mater 1(1):R1–R9CrossRefGoogle Scholar
  211. Xu C et al (2002) Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ Res 91(6):501–508CrossRefGoogle Scholar
  212. Yamashita J et al (2000) Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408(6808):92–96CrossRefGoogle Scholar
  213. Zantop T et al (2006) Extracellular matrix scaffolds are repopulated by bone marrow-derived cells in a mouse model of achilles tendon reconstruction. J Orthop Res 24(6):1299–1309CrossRefGoogle Scholar
  214. Zellner JL et al (1999) Long-term experience with the St. Jude Medical valve prosthesis. Ann Thorac Surg 68(4):1210–1218CrossRefGoogle Scholar
  215. Zietz C et al (1998) MDM-2 oncoprotein overexpression, p53 gene mutation, and VEGF up-regulation in angiosarcomas. Am J Pathol 153(5):1425–1433CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • S. Reed Plimpton
    • 1
  • Wendy F. Liu
    • 2
  • Arash Kheradvar
    • 3
    Email author
  1. 1.University of CaliforniaIrvineUSA
  2. 2.Edwards Lifesciences Center for Advanced Cardiovascular TechnologyUniversity of CaliforniaIrvineUSA
  3. 3.Edwards Lifesciences Center for Advanced Cardiovascular TechnologyUniversity of CaliforniaIrvineUSA

Personalised recommendations