Advertisement

Speeding Up Logico-Numerical Strategy Iteration

  • David Monniaux
  • Peter Schrammel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8723)

Abstract

We introduce an efficient combination of polyhedral analysis and predicate partitioning. Template polyhedral analysis abstracts numerical variables inside a program by one polyhedron per control location, with a priori fixed directions for the faces. The strongest inductive invariant in such an abstract domain may be computed by a combination of strategy iteration and SMT solving. Unfortunately, the above approaches lead to unacceptable space and time costs if applied to a program whose control states have been partitioned according to predicates. We therefore propose a modification of the strategy iteration algorithm where the strategies are stored succinctly, and the linear programs to be solved at each iteration step are simplified according to an equivalence relation. We have implemented the technique in a prototype tool and we demonstrate on a series of examples that the approach performs significantly better than previous strategy iteration techniques.

Keywords

Equivalence Class Linear Inequality Strategy Iteration Boolean Variable Propositional Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gawlitza, T.M., Monniaux, D.: Invariant generation through strategy iteration in succinctly represented control flow graphs. Logical Methods in Computer Science (2012) Journal version of an article in ESOP 2011Google Scholar
  2. 2.
    Halbwachs, N., Proy, Y.E., Roumanoff, P.: Verification of real-time systems using linear relation analysis. Formal Methods in System Design 11, 157–185 (1997)CrossRefGoogle Scholar
  3. 3.
    Schrammel, P., Subotic, P.: Logico-numerical max-strategy iteration. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 414–433. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Bouajjani, A., Fernandez, J.C., Halbwachs, N., Raymond, P.: Minimal state graph generation. Sci. Comput. Program. 18, 247–269 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Gawlitza, T., Seidl, H.: Precise relational invariants through strategy iteration. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 23–40. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Gawlitza, T.M., Seidl, H.: Solving systems of rational equations through strategy iteration. ACM Trans. Program. Lang. Syst. 33, 11:1–11:48 (2011)Google Scholar
  7. 7.
    Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans. Computers 35, 677–691 (1986)CrossRefzbMATHGoogle Scholar
  8. 8.
    Monniaux, D., Schrammel, P.: Scaling up logico-numerical strategy iteration (extended version) (2014), http://arxiv.org/abs/1403.2319
  9. 9.
    Schrammel, P.: Logico-Numerical Verification Methods for Discrete and Hybrid Systems. PhD thesis, Université de Grenoble (2012)Google Scholar
  10. 10.
    Gawlitza, T.M., Monniaux, D.: Improving strategies via SMT solving. In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 236–255. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Gonnord, L., Halbwachs, N.: Combining widening and acceleration in linear relation analysis. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 144–160. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Schrammel, P., Jeannet, B.: Applying abstract acceleration to (co-)reachability analysis of reactive programs. J. of Symb. Comp. 47, 1512–1532 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Bonakdarpour, B., Kulkarni, S.S., Arora, A.: Disassembling real-time fault-tolerant programs. In: EMSOFT, pp. 169–178. ACM (2008)Google Scholar
  14. 14.
    Schrammel, P., Melham, T., Kroening, D.: Chaining test cases for reactive system testing. In: Yenigün, H., Yilmaz, C., Ulrich, A. (eds.) ICTSS 2013. LNCS, vol. 8254, pp. 133–148. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Sankaranarayanan, S., Homaei, H., Lewis, C.: Model-based dependability analysis of programmable drug infusion pumps. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 317–334. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Schrammel, P., Jeannet, B.: Logico-numerical abstract acceleration and application to the verification of data-flow programs. In: Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 233–248. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: A static analyzer for large safety-critical software. In: PLDI, pp. 196–207. ACM (2003)Google Scholar
  18. 18.
    Gaubert, S., Goubault, É., Taly, A., Zennou, S.: Static analysis by policy iteration on relational domains. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 237–252. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Sotin, P., Jeannet, B., Védrine, F., Goubault, E.: Policy iteration within logico-numerical abstract domains. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 290–305. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • David Monniaux
    • 1
  • Peter Schrammel
    • 2
  1. 1.CNRS / VERIMAGFrance
  2. 2.University of OxfordUK

Personalised recommendations