Advertisement

Invariance of Conjunctions of Polynomial Equalities for Algebraic Differential Equations

  • Khalil Ghorbal
  • Andrew Sogokon
  • André Platzer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8723)

Abstract

In this paper we seek to provide greater automation for formal deductive verification tools working with continuous and hybrid dynamical systems. We present an efficient procedure to check invariance of conjunctions of polynomial equalities under the flow of polynomial ordinary differential equations. The procedure is based on a necessary and sufficient condition that characterizes invariant conjunctions of polynomial equalities. We contrast this approach to an alternative one which combines fast and sufficient (but not necessary) conditions using differential cuts for soundly restricting the system evolution domain.

Keywords

Algebraic Differential Equation Polynomial Vector Proof Rule Ascend Chain Condition Darboux Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Basu, S., Pollack, R., Roy, M.F.: On the combinatorial and algebraic complexity of quantifier elimination. J. ACM 43(6), 1002–1045 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Bayer, D., Stillman, M.E.: A criterion for detecting m-regularity. Inventiones Mathematicae 87, 1 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Blanchini, F.: Set invariance in control. Automatica 35(11), 1747–1767 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Buchberger, B.: Gröbner-Bases: An Algorithmic Method in Polynomial Ideal Theory, ch. 6, pp. 184–232. Reidel Publishing Company, Dodrecht (1985)Google Scholar
  5. 5.
    Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimination. J. Symb. Comput. 12(3), 299–328 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms - an introduction to computational algebraic geometry and commutative algebra, 2nd edn. Springer (1997)Google Scholar
  7. 7.
    Darboux, J.G.: Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré. Bulletin des Sciences Mathématiques et Astronomiques 2(1), 151–200 (1878)Google Scholar
  8. 8.
    Dubé, T.: The structure of polynomial ideals and Gröbner bases. SIAM J. Comput. 19(4), 750–773 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F4). Journal of Pure and Applied Algebra 139(1-3), 61–88 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without reduction to zero (F5). In: Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, ISSAC 2002, pp. 75–83. ACM, New York (2002)CrossRefGoogle Scholar
  11. 11.
    Ghorbal, K., Platzer, A.: Characterizing algebraic invariants by differential radical invariants. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 279–294. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  12. 12.
    Ghorbal, K., Sogokon, A., Platzer, A.: Invariance of conjunctions of polynomial equalities for algebraic differential equations. Tech. Rep. CMU-CS-14-122, School of Computer Science, CMU, Pittsburgh, PA (June 2014), http://reports-archive.adm.cs.cmu.edu/anon/2014/abstracts/14-122.html
  13. 13.
    Goriely, A.: Integrability and Nonintegrability of Dynamical Systems. Advanced series in nonlinear dynamics. World Scientific (2001)Google Scholar
  14. 14.
    Lazard, D.: Gröbner-bases, Gaussian elimination and resolution of systems of algebraic equations. In: van Hulzen, J.A. (ed.) EUROCAL 1983. LNCS, vol. 162, pp. 146–156. Springer, Heidelberg (1983)Google Scholar
  15. 15.
    Lie, S.: Vorlesungen über continuierliche Gruppen mit Geometrischen und anderen Anwendungen, Teubner, Leipzig (1893)Google Scholar
  16. 16.
    Liu, J., Zhan, N., Zhao, H.: Computing semi-algebraic invariants for polynomial dynamical systems. In: Chakraborty, S., Jerraya, A., Baruah, S.K., Fischmeister, S. (eds.) EMSOFT, pp. 97–106. ACM (2011)Google Scholar
  17. 17.
    Matringe, N., Moura, A.V., Rebiha, R.: Generating invariants for non-linear hybrid systems by linear algebraic methods. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 373–389. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Mayr, E.W.: Membership in polynomial ideals over Q is exponential space complete. In: Cori, R., Monien, B. (eds.) STACS 1989. LNCS, vol. 349, pp. 400–406. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  19. 19.
    Mayr, E.W., Meyer, A.R.: The complexity of the word problems for commutative semigroups and polynomial ideals. Advances in Mathematics 46(3), 305–329 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Neuhaus, R.: Computation of real radicals of polynomial ideals II. Journal of Pure and Applied Algebra 124(1-3), 261–280 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer (2000)Google Scholar
  22. 22.
    Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reasoning 41(2), 143–189 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs. J. Log. Comput. 20(1), 309–352 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Platzer, A.: Logical Analysis of Hybrid Systems - Proving Theorems for Complex Dynamics. Springer (2010)Google Scholar
  25. 25.
    Platzer, A.: A differential operator approach to equational differential invariants. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 28–48. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  26. 26.
    Platzer, A.: The structure of differential invariants and differential cut elimination. Logical Methods in Computer Science 8(4), 1–38 (2012)Google Scholar
  27. 27.
    Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constructing invariants for hybrid systems. Formal Methods in System Design 32(1), 25–55 (2008)CrossRefzbMATHGoogle Scholar
  28. 28.
    Taly, A., Tiwari, A.: Deductive verification of continuous dynamical systems. In: Kannan, R., Kumar, K.N. (eds.) FSTTCS. LIPIcs, vol. 4, pp. 383–394. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2009)Google Scholar
  29. 29.
    Tarski, A.: A decision method for elementary algebra and geometry. Bulletin of the American Mathematical Society 59 (1951)Google Scholar
  30. 30.
    Zerz, E., Walcher, S.: Controlled invariant hypersurfaces of polynomial control systems. Qualitative Theory of Dynamical Systems 11(1), 145–158 (2012)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Khalil Ghorbal
    • 1
  • Andrew Sogokon
    • 2
  • André Platzer
    • 1
  1. 1.Computer Science DepartmentCarnegie Mellon UniversityPittsburghUSA
  2. 2.LFCS, School of InformaticsUniversity of EdinburghEdinburghUK

Personalised recommendations