Advertisement

SemIndex: Semantic-Aware Inverted Index

  • Richard Chbeir
  • Yi Luo
  • Joe Tekli
  • Kokou Yetongnon
  • Carlos Raymundo Ibañez
  • Agma J. M. Traina
  • Caetano TrainaJr.
  • Marc Al Assad
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8716)

Abstract

This paper focuses on the important problem of semantic-aware search in textual (structured, semi-structured, NoSQL) databases. This problem has emerged as a required extension of the standard containment keyword based query to meet user needs in textual databases and IR applications. We provide here a new approach, called SemIndex, that extends the standard inverted index by constructing a tight coupling inverted index graph that combines two main resources: a general purpose semantic network, and a standard inverted index on a collection of textual data. We also provide an extended query model and related processing algorithms with the help of SemIndex. To investigate its effectiveness, we set up experiments to test the performance of SemIndex. Preliminary results have demonstrated the effectiveness, scalability and optimality of our approach.

Keywords

Semantic Queries Inverted lndex NoSQL indexing Semantic Network Ontologies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bast, H., Buchhold, B.: An index for efficient semantic full-text search. In: 22nd ACM Int. Conf. on CIKM, pp. 369–378 (2013)Google Scholar
  2. 2.
    Burton-Jones, A., Storey, V.C., Sugumaran, V., Purao, S.: A heuristic-based methodology for semantic augmentation of user queries on the web. In: Song, I.-Y., Liddle, S.W., Ling, T.-W., Scheuermann, P. (eds.) ER 2003. LNCS, vol. 2813, pp. 476–489. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Carpineto, C., et al.: Improving retrieval feedback with multiple term-ranking function combination. ACM Trans. Inf. Syst. 20(3), 259–290 (2002)CrossRefGoogle Scholar
  4. 4.
    Chandramouli, K., et al.: Query refinement and user relevance feedback for contextualized image retrieval. In: 5th International Conference on Visual Information Engineering, pp. 453–458 (2008)Google Scholar
  5. 5.
    Cimiano, P., et al.: Towards the self-annotating web. In: 13th Int. Conf. on WWW, pp. 462–471 (2004)Google Scholar
  6. 6.
    Das, S., et al.: Making unstructured data sparql using semantic indexing in oracle database. In: IEEE 29th ICDE, pp. 1405–1416 (2012)Google Scholar
  7. 7.
    de Limaand, E.F., Pedersen, J.O.: Phrase recognition and expansion for short, precision-biased queries based on a query log. In: 22nd Int. Conf. ACM SIGIR, pp. 145–152 (1999)Google Scholar
  8. 8.
    Fellbaum, C.: Wordnet an electronic lexical database. MIT Press (May 1998)Google Scholar
  9. 9.
    Florescu, D., et al.: Integrating keyword search into xml query processing. Comput. Netw. 33(1-6), 119–135 (2000)CrossRefGoogle Scholar
  10. 10.
    Frakes, W.B., Baeza-Yates, R.A. (eds.): Information retrieval: Data structures and algorithms. Prentice-Hall (1992)Google Scholar
  11. 11.
    Grefenstette, G.: Explorations in automatic thesaurus discovery. Kluwer Pub. (1994)Google Scholar
  12. 12.
    Kumar, S., et al.: Ontology based semantic indexing approach for information retrieval system. Int. J. of Comp. App. 49(12), 14–18 (2012)Google Scholar
  13. 13.
    Li, Y., Yang, H., Jagadish, H.V.: Term disambiguation in natural language query for XML. In: Larsen, H.L., Pasi, G., Ortiz-Arroyo, D., Andreasen, T., Christiansen, H. (eds.) FQAS 2006. LNCS (LNAI), vol. 4027, pp. 133–146. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Mishra, C., Koudas, N.: Interactive query refinement. In: 12th Int. Conf. on EDBT, pp. 862–873 (2009)Google Scholar
  15. 15.
    Navigli, R.: Word sense disambiguation: A survey. ACM Comput. Surv. 41(2), 10:1–10:69 (2009)Google Scholar
  16. 16.
    Navigli, R., Crisafulli, G.: Inducing word senses to improve web search result clustering. In: Int. Conf. on Empirical Methods in Natural Language Processing, pp. 116–126 (2010)Google Scholar
  17. 17.
    Nguyen, S.H., Świeboda, W., Jaśkiewicz, G.: Semantic evaluation of search result clustering methods. In: Bembenik, R., Skonieczny, Ł., Rybiński, H., Kryszkiewicz, M., Niezgódka, M. (eds.) Intell. Tools for Building a Scientific Information. Studies in Computational Intelligence, vol. 467, pp. 393–414. Springer, Heidelberg (2013), http://dx.doi.org/10.1007/978-3-642-35647-6_24 CrossRefGoogle Scholar
  18. 18.
    Navigli Paola, R., et al.: Extending and enriching wordnet with ontolearn. In: Int. Conf. on GWC 2004, pp. 279–284 (2004)Google Scholar
  19. 19.
    Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. In: 14th Int. Conf. on Artificial intelligence, pp. 448–453 (1995)Google Scholar
  20. 20.
    Salton, G., Buckley, C.: Improving retrieval performance by relevance feedback. In: Readings in Information Retrieval, pp. 355–364 (1997)Google Scholar
  21. 21.
    Sussna, M.: Word sense disambiguation for free-text indexing using a massive semantic network. In: 2nd Int. ACM Conf. on CIKM, pp. 67–74 (1993)Google Scholar
  22. 22.
    Velardi, P., et al.: Ontolearn reloaded: A graph-based algorithm for taxonomy induction. Computational Linguistics 39, 665–707 (2013)CrossRefGoogle Scholar
  23. 23.
    Voorhees, E.M.: Query expansion using lexical-semantic relations. In: 17th Int. ACM Conf. on SIGIR, pp. 61–69 (1994)Google Scholar
  24. 24.
    Weeds, J., et al.: Characterising measures of lexical distributional similarity. In: 20th Int. Conf. on Computational Linguistics (2004)Google Scholar
  25. 25.
    Wen, H., et al.: Clustering web search results using semantic information. In: 2009 Int. Conf. on Machine Learning and Cybernetics, vol. 3, pp. 1504–1509 (2009)Google Scholar
  26. 26.
    Zhong, S., et al.: A design of the inverted index based on web document comprehending. JCP 6(4), 664–670 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Richard Chbeir
    • 1
  • Yi Luo
    • 2
  • Joe Tekli
    • 3
  • Kokou Yetongnon
    • 2
  • Carlos Raymundo Ibañez
    • 4
  • Agma J. M. Traina
    • 5
  • Caetano TrainaJr.
    • 5
  • Marc Al Assad
    • 3
  1. 1.University of Pau and Adour CountriesAngletFrance
  2. 2.University of BourgogneDijonFrance
  3. 3.Lebanese American UniversityByblosLebanon
  4. 4.Universidad Peruana de Ciencias AplicadasLimaPeru
  5. 5.University of São PauloSão Carlos-SPBrazil

Personalised recommendations