Advertisement

Modular Reconfigurable Robotic Systems: Lattice Automata

  • Nick EckensteinEmail author
  • Mark Yim
Chapter
Part of the Emergence, Complexity and Computation book series (ECC, volume 13)

Abstract

Modular and reconfigurable robots hold the promises of versatility, low cost, and robustness. Many different implementations utilizing lattice structures exist, with varying advantages. We introduce, define terms for, and describe in full several key systems. Comparisons between connection mechanisms are made. We describe some of the software concerns for modular robots, and review the applications of self-assembly and self-repair.

Keywords

Shape Memory Alloy Dielectric Elastomer Shape Memory Alloy Wire Connection Mechanism Modular Robot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    An, B.K.: Em-cube: cube-shaped, self-reconfigurable robots sliding on structure surfaces. In: IEEE International Conference on Robotics and Automation ICRA 2008, pp. 3149–3155 (2008)Google Scholar
  2. 2.
    Butler, Z., Rus, D.: Distributed planning and control for modular robots with unit-compressible modules. Int. J. Robot. Res. 22(9), 699–715 (2003)CrossRefGoogle Scholar
  3. 3.
    Casal, A., Yim, M.H.: Self-reconfiguration planning for a class of modular robots. In: Photonics East’99, International Society for Optics and Photonics, pp. 246–257 (1999)Google Scholar
  4. 4.
    Castano, A., Behar, A., Will, P.M.: The conro modules for reconfigurable robots. IEEE/ASME Trans. Mechatron 7(4), 403–409 (2002)CrossRefGoogle Scholar
  5. 5.
    Davey, J., Kwok, N., Yim, M.: Emulating self-reconfigurable robots-design of the smores system. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2012), pp. 4464–4469 (2012)Google Scholar
  6. 6.
    Eckenstein, N., Yim, M.: The x-face: an improved planar passive mechanical connector for modular self-reconfigurable robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2012), pp. 3073–3078 (2012)Google Scholar
  7. 7.
    Eckenstein, N., Yim, M.: Area of acceptance for 3d self-aligning robotic connectors: concepts, metrics, and designs. In: proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2014) (2014 (in submission))Google Scholar
  8. 8.
    Fitch, R., Butler, Z.: Million module march: scalable locomotion for large self-reconfiguring robots. Int. J. Robot. Res. 27(3–4), 331–343 (2008)CrossRefGoogle Scholar
  9. 9.
    Fukuda, T., Nakagawa, S., Kawauchi, Y., Buss, M.: Structure decision method for self organising robots based on cell structures-cebot. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp 695–700 (1989)Google Scholar
  10. 10.
    Garcia, R.F.M., Hiller, J.D., Stoy, K., Lipson, H.: A vacuum-based bonding mechanism for modular robotics. IEEE Trans. Robot. 27(5), 876–890 (2011)CrossRefGoogle Scholar
  11. 11.
    Gilpin, K., Knaian, A., Rus, D.: Robot pebbles: one centimeter modules for programmable matter through self-disassembly. In: IEEE International Conference on Robotics and Automation (ICRA 2010), pp. 2485–2492 (2010)Google Scholar
  12. 12.
    Gilpin, K., Koyanagi, K., Rus, D.: Making self-disassembling objects with multiple components in the robot pebbles system. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3614–3621 (2011)Google Scholar
  13. 13.
    Girard, A.R., De Sousa, J.B., Hedrick, J.K.: Dynamic positioning concepts and strategies for the mobile offshore base. In: Proceedings of the IEEE International Conference on Intelligent Transportation Systems, pp. 1095–1101 (2001)Google Scholar
  14. 14.
    Gorbenko, A.A., Popov, V.Y.: Programming for modular reconfigurable robots. Program. Comput. Softw. 38(1), 13–23 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Groß, R., Dorigo, M.: Self-assembly at the macroscopic scale. Proc. IEEE 96(9), 1490–1508 (2008)CrossRefGoogle Scholar
  16. 16.
    Kalontarov, M., Tolley, M.T., Lipson, H., Erickson, D.: Hydrodynamically driven docking of blocks for 3d fluidic assembly. Microfluid. Nanofluid. 9(2–3), 551–558 (2010)CrossRefGoogle Scholar
  17. 17.
    Karagozler, M.E., Kirby, B., Lee, W.J., Marinelli, E., Ng, T.C., Weller, M.P., Goldstein, S.C.: Ultralight modular robotic building blocks for the rapid deployment of planetary outposts (2006)Google Scholar
  18. 18.
    Klavins, E., Ghrist, R., Lipsky, D.: A grammatical approach to self-organizing robotic systems. IEEE Trans. Autom. Control 51(6), 949–962 (2006)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Knaian, A.N., Cheung, K.C., Lobovsky, M.B., Oines, A.J., Schmidt-Neilsen, P., Gershenfeld, N.A.: The milli-motein: a self-folding chain of programmable matter with a one centimeter module pitch. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1447–1453 (2012)Google Scholar
  20. 20.
    Kotay, K., Rus, D., Vona, M., McGray, C.: The self-reconfiguring robotic molecule. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 1, pp. 424–431 (1998)Google Scholar
  21. 21.
    Kurokawa, H., Tomita, K., Kamimura, A., Kokaji, S., Hasuo, T., Murata, S.: Distributed self-reconfiguration of m-tran iii modular robotic system. Int. J. Robot. Res. 27(3–4), 373–386 (2008)CrossRefGoogle Scholar
  22. 22.
    Murata, S., Kurokawa, H., Kokaji, S.: Self-assembling machine. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automation, pp. 441–448 (1994)Google Scholar
  23. 23.
    Murata, S., Kurokawa, H., Yoshida, E., Tomita, K., Kokaji, S.: A 3-d self-reconfigurable structure. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 1, pp. 432–439 (1998)Google Scholar
  24. 24.
    Murata, S., Yoshida, E., Kurokawa, H., Tomita, K., Kokaji, S.: Self-repairing mechanical systems. Autono. Robots 10(1), 7–21 (2001)CrossRefzbMATHGoogle Scholar
  25. 25.
    Nilsson, M.: Heavy-duty connectors for self-reconfiguring robots. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2002), vol. 4, pp. 4071–4076 (2002)Google Scholar
  26. 26.
    O’Hara, I., Paulos, J., Davey, J., Eckenstein, N., Doshi, N., Tosun, T., Greco, J., Seo, J., Turpin, M., Kumar, V., Yim, M.: Self-assembly of a swarm of autonomous boats into floating structures. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). (2014 (in submission))Google Scholar
  27. 27.
    Østergaard, E.H., Kassow, K., Beck, R., Lund, H.H.: Design of the atron lattice-based self-reconfigurable robot. Auton. Robots 21(2), 165–183 (2006)CrossRefGoogle Scholar
  28. 28.
    Oung, R., Andrea, R.: The distributed flight array. Mechatronics 21(6), 908–917 (2011)Google Scholar
  29. 29.
    Pamecha, A., Ebert-Uphoff, I., Chirikjian, G.S.: Useful metrics for modular robot motion planning. IEEE Trans. Robot. Autom. 13(4), 531–545 (1997)CrossRefGoogle Scholar
  30. 30.
    Park, M., Chitta, S., Teichman, A., Yim, M.: Automatic configuration recognition methods in modular robots. Int. J. Robot. Res. 27(3–4), 403–421 (2008)CrossRefGoogle Scholar
  31. 31.
    Piranda, B., Laurent, G.J., Bourgeois, J., Clévy, C., Möbes, S., Fort-Piat, N.L.: A new concept of planar self-reconfigurable modular robot for conveying microparts. Mechatronics 23(7), 906–915 (2013)CrossRefGoogle Scholar
  32. 32.
    Revzen, S., Bhoite, M., Macasieb, A., Yim, M.: Structure synthesis on-the-fly in a modular robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4797–4802 (2011)Google Scholar
  33. 33.
    Romanishin, J.W., Gilpin, K., Rus, D.: M-blocks: Momentum-driven, magnetic modular robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3073–3078 (2013)Google Scholar
  34. 34.
    Shen, W.M., Kovac, R., Rubenstein, M.: Singo: a single-end-operative and genderless connector for self-reconfiguration, self-assembly and self-healing. In: IEEE International Conference on Robotics and Automation (ICRA’9), pp. 4253–4258 (2009)Google Scholar
  35. 35.
    Shimizu, M., Ishiguro, A., Kawakatsu, T.: Slimebot: A modular robot that exploits emergent phenomena. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, ICRA 2005, pp. 2982–2987 (2005)Google Scholar
  36. 36.
    Sprowitz, A., Pouya, S., Bonardi, S., Van den Kieboom, J., Mockel, R., Billard, A., Dillenbourg, P., Ijspeert, A.J.: Roombots: reconfigurable robots for adaptive furniture. IEEE Comput. Intell. Mag. 5(3), 20–32 (2010)CrossRefGoogle Scholar
  37. 37.
    Støy, K.: An introduction to Self-Reconfigurable Robots. MIT Press, Boston, MA (2009)Google Scholar
  38. 38.
    Suh, J., Homans, S., Yim, M.: Telecubes: mechanical design of a module for self-reconfigurable robotics. In: Proceedings of the 2002 IEEE International Conference on Robotics and Automation (ICRA 2002), vol. 4, pp. 4095–4101 (2002)Google Scholar
  39. 39.
    Tolley, M.T., Krishnan, M., Erickson, D., Lipson, H.: Dynamically programmable fluidic assembly. Appl. Phys. Lett. 93(25), 254,105–254,105–103 (2008)Google Scholar
  40. 40.
    Tolley, M.T., Kalontarov, M., Neubert, J., Erickson, D., Lipson, H.: Stochastic modular robotic systems: a study of fluidic assembly strategies. IEEE Trans. Robot. 26(3), 518–530 (2010)CrossRefGoogle Scholar
  41. 41.
    Unsal, C., Kiliccote, H., Khosla, P.K.: I (ces)-cubes: a modular self-reconfigurable bipartite robotic system. In: Photonics East’99, International Society for Optics and Photonics, pp. 258–269 (1999)Google Scholar
  42. 42.
    Vasilescu, I., Varshavskaya, P., Kotay, K., Rus, D.: Autonomous modular optical underwater robot (amour) design, prototype and feasibility study. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, ICRA 2005, pp. 1603–1609 (2005)Google Scholar
  43. 43.
    Vassilvitskii, S., Yim, M., Suh, J.: A complete, local and parallel reconfiguration algorithm for cube style modular robots. In: Proceedings of the 2002 IEEE International Conference on Robotics and Automation (ICRA ’02), vol. 1, pp. 117–122 (2002)Google Scholar
  44. 44.
    Wei, H., Chen, Y., Liu, M., Cai, Y., Wang, T.: Swarm robots: from self-assembly to locomotion. Comput. J. 54(9), 1465–1474 (2011)CrossRefGoogle Scholar
  45. 45.
    White, P., Kopanski, K., Lipson, H.: Stochastic self-reconfigurable cellular robotics. In: Proceedings IEEE International Conference on Robotics and Automation (ICRA ’04), vol. 3, pp. 2888–2893 (2004)Google Scholar
  46. 46.
    White, P.J., Yim, M.: Reliable external actuation for full reachability in robotic modular self-reconfiguration. Int. J. Robot. Res. 29(5), 598–612 (2010)CrossRefGoogle Scholar
  47. 47.
    White, P.J., Thorne, C.E., Yim, M.: Right angle tetrahedron chain externally-actuated testbed (ratchet): a shape-changing system. In: Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE), vol. 7, pp. 807–817 (2009)Google Scholar
  48. 48.
    White, P.J., Latscha, S., Schlaefer, S., Yim, M.: Dielectric elastomer bender actuator applied to modular robotics. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2011), pp. 408–413 (2011)Google Scholar
  49. 49.
    Yim, M., Zhang, Y., Duff, D.: Modular robots. IEEE Spectr. 39(2), 30–34 (2002)CrossRefGoogle Scholar
  50. 50.
    Yim, M., Roufas, K., Duff, D., Zhang, Y., Eldershaw, C., Homans, S.: Modular reconfigurable robots in space applications. Auton. Robots 14(2–3), 225–237 (2003)CrossRefzbMATHGoogle Scholar
  51. 51.
    Yim, M., Shirmohammadi, B., Sastra, J., Park, M., Dugan, M., Taylor, C.: Towards robotic self-reassembly after explosion. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2767–2772 (2007)Google Scholar
  52. 52.
    Yoshida, E., Matura, S., Kamimura, A., Tomita, K., Kurokawa, H., Kokaji, S.: A self-reconfigurable modular robot: reconfiguration planning and experiments. Int. J. Robot. Res. 21(10–11), 903–915 (2002)CrossRefGoogle Scholar
  53. 53.
    Yoshida, E., Murata, S., Kokaji, S., Kamimura, A., Tomita, K., Kurokawa, H.: Get back in shape![sma self-reconfigurable microrobots]. IEEE Robot. Autom. Mag. 9(4), 54–60 (2002)CrossRefGoogle Scholar
  54. 54.
    Zykov, V., Chan, A., Lipson, H.: Molecubes: an open-source modular robotics kit. In: Proceedings of the IROS, vol. 7 (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.GRASP Lab and Department of Mechanical Engineering and Applied MechanicsUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations